Презентация по физике на тему использование электроэнергии. Производство, использование и передача электроэнергии




Мощность, передаваемая по линии трехфазного тока P ф = U ф I ф cosφ ф Мощность трех фаз при равномерной нагрузке: P = 3P ф = 3U ф I ф cosφ ф Когда нагрузки соединены звездой, то: U ф = U л /3; I ф = I л P = (3U л I л /3) cosφ ф = 3IUcosφ. При соединении треугольником: I ф = U л /3; U ф = U л Мощность трехфазной системы: P = 3*IUcosφ




Коэффициентом мощности или cos φ электрической сети называется отношение активной мощности к полной мощности нагрузки расчетного участка. cos φ = P/S Только в том случае, когда нагрузка имеет исключительно активный характер, cos φ равен единице. В основном же, активная мощность меньше полной и поэтому коэффициент мощности меньше единицы. Низкий коэффициент мощности потребителя приводит: 1. к необходимости увеличения полной мощности трансформаторов и электрических станций; 2. к понижению КПД вырабатывающих и трансформирующих элементов цепи; 3. к увеличению потерь мощности и напряжения в проводах. Необходимо, чтобы как можно большую часть в полной мощности составляла именно активная мощность, в этом случае коэффициент мощности будет ближе к единице. Для увеличения коэффициента мощности можно: изменить мощность и тип устанавливаемых электродвигателей; увеличить загрузку электродвигателей в процессе работы; уменьшить время работы в холостом режиме оборудования потребляющего индуктивную мощность.


Электрическая подстанция Электрическая подстанция электроустановка, предназначенная для приема, преобразования и распределения электрической энергии, состоящая из трансформаторов или других преобразователей электрической энергии, устройств управления, распределительных и вспомогательных устройств.


Повышающие и понижающие подстанции Повышающая подстанция, в которой стоят повышающие трансформаторы, повышает электрическое напряжение при соответствующем снижении значения силы тока, в то время как понижающая подстанция уменьшает выходное напряжение при пропорциональном увеличении силы тока. Необходимость в повышении передаваемого напряжения возникает в целях экономии металла, используемого в проводах ЛЭП. Уменьшение силы проходящего тока влечёт за собой уменьшение потери энергии, которая находится в прямой квадратичной зависимости от значения силы тока. Основная причина повышения напряжения состоит в том, что чем выше напряжение, тем большую мощность и на большее расстояние можно передать по линии электропередачи.


Передача электроэнергии постоянным током Наиболее перспективный способ использование постоянного тока. ЛЭП постоянного тока позволяют передать большую энергию по тем же проводам, кроме того, исчезают затруднения, связанные с индуктивным сопротивлением и емкостью линий. Переменное напряжение повышение переменного напряжения (трансформатор) постоянное напряжение переменное напряжение (выпрямитель) (инвертор) понижение до нужного значения. (трансформатор)


Энергосистемы Энергосистемы электрические станции ряда районов страны, объединенные высоковольтными линиями передач, образующие общую электрическую сеть, к которой присоединены потребители. Энергосистема обеспечивает бесперебойность подачи энергии потребителям вне зависимости от места их расположения. Сейчас почти вся Россия обеспечивается электроэнергией объединенными энергетическими системами.


Объединённая энергосистема Объединенная энергетическая система (ОЭС) совокупность нескольких энергетических систем, объединенных общим режимом работы, имеющая общее диспетчерское управление как высшую ступень управления по отношению к диспетчерским управлениям входящих в нее энергосистем. В составе Единой энергетической системы России выделяют шесть ОЭС, седьмая - ОЭС Востока - работает изолированно от Единой энергетической системы. ОЭС Центра (Астраханскую, Белгородскую, Брянскую, Владимирскую, Волгоградскую, Вологодскую, Воронежскую, Нижегородскую, Ивановскую, Тверскую, Калужскую, Костромскую, Курскую, Липецкую, Московскую, Орловскую, Рязанскую, Смоленскую, Тамбовскую, Тульскую и Ярославскую энергосистемы). ОЭС Юга (ранее - ОЭС Северного Кавказа), включающая в себя Дагестанскую, Калмыцкую, Карачаево-Черкесскую, Кабардино-Балкарскую, Кубанскую, Ростовскую, Северо-Осетинскую, Ставропольскую, Чеченскую и Ингушскую энергосистемы.


ОЭС Северо-запада, включающая в себя Архангельскую, Карельскую, Кольскую, Коми, Ленинградскую, Новгородскую, Псковскую и Калининградскую энергосистемы. ОЭС Средней Волги, включающая в себя Марийскую, Мордовскую, Пензенскую, Самарскую, Саратовскую, Татарскую, Ульяновскую и Чувашскую энергосистемы. ОЭС Урала, включающая в себя Башкирскую, Кировскую, Курганскую, Оренбургскую, Пермскую, Свердловскую, Тюменскую, Удмуртскую и Челябинскую энергосистемы. ОЭС Сибири, включающая в себя Алтайскую, Бурятскую, Иркутскую, Красноярскую, Кузбасскую, Новосибирскую, Омскую, Томскую, Хакасскую и Читинскую энергосистемы. ОЭС Востока, включающая в себя Амурскую, Дальневосточную и Хабаровскую энергосистемы.

Презентация по слайдам

Текст слайда: Производство, передача и использование электрической энергии. Разработал: Н.В.Грузинцева. г. Красноярск


Текст слайда: Цель проекта: Понимание производства, передачи и использования электрической энергии. Задачи проекта, рассмотреть: Генерирование электрической энергии. Трансформаторы. Производство и использование электрической энергии. Передача электроэнергии. Эффективное использование электроэнергии.


Текст слайда: Вступление: Электрический ток вырабатывается в генераторах-устройствах, преобразующих энергию того или иного вида в электрическую энергию. К генераторам относятся: Гальванические элементы. Электростатические батареи. Термобатареи. Солнечные батареи. и т. п.


Текст слайда: Если тело или несколько взаимодействующих между собой тел (система тел) могут совершить работу, то говорят, что они обладают энергией. Энергия – физическая величина, показывающая, какую работу может совершить тело (или несколько тел). Энергию выражают в системе СИ в тех же единицах, что и работу, т.е. в джоулях.


Текст слайда: Преобладают электромеханические индукционные генераторы переменного тока. Механическая энергия Электрическая энергия Для получения большого магнитного потока в генераторах применяют специальную магнитную систему состоящую из: Статор; Генератор; Кольца; Турбина; Корпус; Ротор; Щётки; Возбудитель.


Текст слайда: Преобразование переменного тока, при котором напряжение увеличивается или уменьшается в несколько раз практически без потери мощности, осуществляется с помощью трансформаторов. Устройство трансформатора: Замкнутый стальной сердечник, собранный из пластин; Две (иногда более) катушки с проволочными обмотками. первичная, вторичная, применяемая к источнику к ней присоединяют переменного напряжения. нагрузку, т.е. приборы и устройства, потребляющие электроэнергию.


Текст слайда: Источник энергии на ТЭС: уголь, газ, нефть, мазут, горючие сланцы, угольная пыль. Дают 40% электроэнергии. Внутренняя Энергия проводов ТЭС ПОТРЕБИТЕЛЬ


Текст слайда: На ГЭС для вращения роторов генераторов используется потенциальная энергия воды. Дают 20% электроэнергии. ГЭС ПОТРЕБИТЕЛЬ Внутренняя энергия проводов


Текст слайда: промышленность транспорт производственные и бытовые нужды механическая энергия ЭЛЕКТРОЭНЕРГИЯ

Слайд №10


Текст слайда: Электрические станции ряда районов страны объединены высоковольтными линиями электропередачи, образующие общую электрическую цепь, к которой присоединены потребители. Такое объединение называется энергосистемой. Передача электроэнергии. заметные потери Потребитель трансформатор напряжение понижается; трансформатор напряжение увеличивается; сила тока уменьшается.

Использование электроэнергии на транспорте Выполнили работу: ученицы 11 «а» кл КСОШ №1 Кряжева Кристина Перфилова Даша ТуликЮля
Затолокина Маша
Руководитель: Аршакян Р.Ш.

Цели и задачи:

Показать необходимость использования
новых видов двигателей –
Электромобилей

Актуальность темы:

Экологические
проблемы связанные с
транспортом:
-Загрязнение
воздушного бассейна.
-Загрязнение водоёмов.
-Загрязнение почв.
-Шумовое загрязнение.

К чему может привести
использование тепловых
двигателей:
-Парниковому эффекту.
-Повышению температуры на планете.
-Тепловому загрязнению водоёмов.
-Загрязнению воздуха.

Пути решения:

Развитие общественного транспорта.
Другие виды топлива.
Очистные фильтры.
Развитие передвижения на велосипеде
или пешком.
Создание «зелёных коридоров».
Электромобили.

Томас Эдисон осматривает электромобиль Detroit Electric. Электромобиль массово производился с 1907 по 1927 годы, было

произведено более 20000 экземпляров. Максимальная скорость
составляла 32км/ч, дальность пробега на одном заряде
аккумуляторной батареи 130км.

La Jamais Contente (фр. Всегда недовольный) 1899г - электромобиль с легкосплавным обтекаемым кузовом - первый автомобиль,

La Jamais Contente (фр. Всегда недовольный) 1899г электромобиль с легкосплавным обтекаемым кузовом первый автомобиль, разогнавшийся свыше 100км/ч

Электромобиль Reva Classe индийского производства - один из самых успешных современных серийных электромобилей.

Компания Lightning представила на лондонской выставке British Motor Show спортивный электромобиль Lightning GT, от которого

невозможно отвести
взгляд.
Спортивный Lightning GT обладает мощностью свыше 700 л.с. и разгоняется до
100 км/ч за 4 секунды. Максимальная скорость - около 210 км/ч. Автомобиль
получил рейтинг экологичности благодаря отсутствию выбросов в атмосферу

Автомобиль приводится в движение двигателями, установленными в колесах, благодаря чему удается лучше передать крутящий момент и

упразднить трансмиссию, сцепление и тормозную систему. Во время
торможения двигатели работают как генераторы, заряжая
аккумуляторы, при этом создается сопротивление, за счет которого и
происходит торможение.

Весом в 300 кг (вместе с водителем), Xof1 оснащен 96 вольтовым электродвигателем и работает от литиево-ионного аккумулятора 3.8

кВт. Он способен разогнаться от 0-60 миль в час за 6 секунд,
максимальная скорость – 75 миль в час, полного заряда
аккумулятора хватает, чтобы проехать 125 миль.

ВЫВОД:
Мы с уверенностью смотрим в будущее электротранспорта:
цены на нефть и газ растут, и переход на массовое
использование альтернативных видов транспорта не за
горами.
Индикатором может служить отношение европейских стран
к этой проблеме:
все больше производится различных моделей серийных
электромобилей,
вводится законодательная поддержка владельцев чистого
транспорта,
растет экологическое самосознание населения.
Энтузиасты электромобилей уже сейчас имеют широкие
возможности для реализации своей мечты - все
необходимое для конверсии автомобиля в электромобиль
можно достаточно легко купить за относительно небольшие
деньги

История электричества Впервые электрический заряд обнаружил Фалес Милетский еще 600 лет до н. э. Он заметил, что янтарь, потёртый о кусочек шерсти, приобретает удивительные свойства притягивать легкие не электризованные предмета(пушинки и куски бумаги). Термин «электричество» впервые ввел английский ученый Тюдор Гилберт, в своей книге «О магнитных свойствах, магнитных телах и о большом магните Земле». В своей книге он доказал, что свойством наэлектризовываться обладает не только янтарь, но и другие вещества. А в середине 17 века всем известный ученый Отто фон Герике создал электростатическую машину, в которой обнаружил свойство заряженных предметов отталкиваться друг от друга. Так начали проявляться основные понятия в разделе электричество. Об истории электричества. Уже в 1729 г. Французский физик Шарль Дюфе установил существование двух типов зарядов. Он назвал такие заряды «стеклянным» и «смоляным», но вскоре, немецкий ученый Георг Лихтенберг, ввел в обиход понятие отрицательно и положительно заряженных зарядов. А в 1745 году был изготовлен первый в истории электрический конденсатор так называемая Лейденская банка. Но возможность сформулировать основные понятия и открытия в науке об электричестве удалось лишь только тогда, когда появились количественные исследования. Тогда началось время открытия основных законов электричества. Закон взаимодействия электронных зарядов был открыт в 1785 г. Французским ученым Шарлем Кулоном с помощью созданной им системы крутильных весов.








Томас Эдисон осматривает электромобиль Detroit Electric. Электромобиль массово производился с 1907 по 1927 годы, было произведено более экземпляров. Максимальная скорость составляла 32 км/ч, дальность пробега на одном заряде аккумуляторной батареи 130 км.






Компания Lightning представила на лондонской выставке British Motor Show спортивный электромобиль Lightning GT, от которого невозможно отвести взгляд. Спортивный Lightning GT обладает мощностью свыше 700 л.с. и разгоняется до 100 км/ч за 4 секунды. Максимальная скорость - около 210 км/ч. Автомобиль получил рейтинг экологичности благодаря отсутствию выбросов в атмосферу


Автомобиль приводится в движение двигателями, установленными в колесах, благодаря чему удается лучше передать крутящий момент и упразднить трансмиссию, сцепление и тормозную систему. Во время торможения двигатели работают как генераторы, заряжая аккумуляторы, при этом создается сопротивление, за счет которого и происходит торможение.


Весом в 300 кг (вместе с водителем), Xof1 оснащен 96 вольтовым электродвигателем и работает от литиево-ионного аккумулятора 3.8 к Вт. Он способен разогнаться от 0-60 миль в час за 6 секунд, максимальная скорость – 75 миль в час, полного заряда аккумулятора хватает, чтобы проехать 125 миль.


Электрическая энергия обладает неоспоримыми преимуществами перед всеми другими видами энергии. Ее можно передавать по проводам на огромные расстояния со сравнительно малыми потерями и удобно распределять между потребителям. Главное же в том, что эту энергию с помощью достаточно простых устройств легко превратит в любые другие формы: механическую, внутреннюю (нагревание тел), энергию света. Электрическая энергия обладает неоспоримыми преимуществами перед всеми другими видами энергии. Ее можно передавать по проводам на огромные расстояния со сравнительно малыми потерями и удобно распределять между потребителям. Главное же в том, что эту энергию с помощью достаточно простых устройств легко превратит в любые другие формы: механическую, внутреннюю (нагревание тел), энергию света.


Преимущество электрической энергии Можно передавать по проводам Можно передавать по проводам Можно трансформировать Можно трансформировать Легко превращается в другие виды энергии Легко превращается в другие виды энергии Легко получается из других видов энергии Легко получается из других видов энергии


Генератор - Устройство, преобразующее энергию того или иного вида в электрическую энергию. Устройство, преобразующее энергию того или иного вида в электрическую энергию. К генераторам относятся гальванические элементы, электростатические машины, термобатареи, солнечные батареи К генераторам относятся гальванические элементы, электростатические машины, термобатареи, солнечные батареи




Эксплуатация генератора Генерировать энергию можно либо вращая виток в поле постоянного магнита, либо виток поместить в изменяющееся магнитное поле (вращать магнит, оставляя виток неподвижным). Генерировать энергию можно либо вращая виток в поле постоянного магнита, либо виток поместить в изменяющееся магнитное поле (вращать магнит, оставляя виток неподвижным).




Значение генератора в производстве электрической энергии Важнейшие детали генератора изготавливаются очень точно. Нигде в природе нет такого сочетания движущихся частей, которые могли бы порождать электрическую энергию столь же непрерывно и экономично Важнейшие детали генератора изготавливаются очень точно. Нигде в природе нет такого сочетания движущихся частей, которые могли бы порождать электрическую энергию столь же непрерывно и экономично




Как устроен трансформатор? Он состоит из замкнутого стального сердечника, собранного из пластин, на который надеты две катушки с проволочными обмотками. Первичная обмотка подключается к источнику переменного напряжения. К вторичной обмотке присоединяют нагрузку.











АЭС производят 17% мировой выработки. Начало ХХI века эксплуатируется 250 АЭС, работают 440 энергоблоков. Больше всего США, Франции, Японии, ФРГ, России, Канаде. Урановый концентрат (U3O8) сосредоточен в следующих странах: Канаде, Австралии, Намибии, США, России. Атомные электростанции


Сравнение типов электростанции Типы электростанц ий Выбросвредных веществ в атмосфе ры, кг Занимае мая площадьга Потребле ние чистой воды м 3 Сбро с грязн ой воды, м 3 Затрат ы наохрану приро ды % ТЭЦ: уголь 251,5600,530 ТЭЦ: мазут 150,8350,210 ГЭС АЭС--900,550 ВЭС10--1 СЭС-2--- БЭС10-200,210









error: Content is protected !!