Что такое теплоэлектроцентраль. Виды и типы современных тепловых электростанций (ТЭС)

ТЭЦ - тепловая электростанция, которая производит не только электроэнергию, но и дает тепло в наши дома зимой. На примере Красноярской ТЭЦ посмотрим как работает почти любая теплоэлектростанция.

В Красноярске есть 3 теплоэлектроцентрали, суммарная электрическая мощность которых всего 1146 МВт. На заглавной фотографии видно 3 дымовые трубы ТЭЦ-3, высота самой высокой из них - 275 метров, вторая по высоте - 180 метров.

Сама аббревиатура ТЭЦ подразумевает собой, что станция вырабатывает не только электричество, но и тепло (горячая вода, отопление), причем, выработка тепла возможно даже более приоритетна в нашей известной суровыми зимами стране.

Упрощенно принцип работы ТЭЦ можно описать следующим образом.

Всё начинается с топлива. В роли топлива на разных электростанциях могут выступать уголь, газ, торф. В нашем случае это бурый уголь с Бородинского разреза, расположенного в 162 км от станции. Уголь привозят по железной дороге. Часть его складируется, другая часть идёт по конвейерам в энергоблок, где сам уголь сначала измельчается до пыли и потом подаётся в камеру сгорания - паровой котёл.

Вагоноопрокидыватель, с помощью которого уголь высыпается в бункера:

Здесь уголь измельчается и попадает в «топку»:



Паровой котел - это агрегат для получения пара с давлением выше атмосферного из непрерывно поступающей в него питательной воды. Происходит это за счет теплоты, выделяющейся при сгорании топлива. Сам котёл выглядит довольно внушительно. На Красноярской ТЭЦ-3 высота котла 78 метров (26-этажный дом), а весит он более 7 000 тонн! Производительность котла - 670 тонн пара в час:

Вид сверху:

Невероятное количество труб:

Отчётливо виден барабан котла . Барабан представляет собой цилиндрический горизонтальный сосуд, имеющий водяной и паровой объемы, которые разделяются поверхностью, называемой зеркалом испарения:

Остывшие дымовые газы (примерно 130 градусов), выходят из топки в электрофильтры. В электрофильтрах происходит очистка газов от золы, и очищенный дым уходит в атмосферу. Эффективная степень очистки дымовых газов составляет 99.7%.

На фотографии те самые электрофильтры:

Проходя через пароперегреватели пар нагревается до температуры 545 градусов и поступает в турбину, где под его давлением вращается ротор турбогенератора и, соответственно, вырабатывается электроэнергия.

Недостатком ТЭЦ является то, что они должны быть построены недалеко от конечного потребителя. Прокладка теплотрасс стоит огромных денег.

На Красноярской ТЭЦ-3 используется прямоточная система водоснабжения, то есть воду для охлаждения конденсатора и использования в котле берут прямо из Енисея, но перед этим она проходит очистку. После использования вода возвращается по каналу обратно в Енисей.

Турбогенератор:

Теперь немного о самой Красноярской ТЭЦ-3.

Строительство станции началось ещё в далёком 1981 году, но, как у нас в России бывает, из-за и кризисов построить ТЭЦ вовремя не получилось. С 1992 г до 2012 г станция работала как котельная - нагревала воду, но электричество вырабатывать научилась только 1-го марта прошлого года. На ТЭЦ работает около 560 человек.

Диспетчерская:

Еще на Красноряской ТЭЦ-3 функционируют 4 водогрейных котла:

Глазок в топке:

А это фото снято с крыши энергоблока. Большая труба имеет высоту 180м, та что поменьше - труба пусковой котельной:

Кстати, самая высокая дымовая труба в мире находится на электростанции в Казахстане в городе Экибастуз. Ее высота - 419.7 метров. Это она:

Трансформаторы:

Внутри здания ЗРУЭ (закрытое распределительное устройство с элегазовой изоляцией) на 220 кВ:

Общий вид распределительного устройства:

На этом всё. Спасибо за внимание.

ТЭЦ — тепловая электростанция, которая производит не только электроэнергию, но и дает тепло в наши дома зимой. На примере Красноярской ТЭЦ посмотрим как работает почти любая теплоэлектростанция.

В Красноярске есть 3 теплоэлектроцентрали, суммарная электрическая мощность которых всего 1146 МВт (для сравнения, одна только наша Новосибирская ТЭЦ 5 имеет мощность 1200 МВт), но примечательна была для меня именно Красноярская ТЭЦ-3 тем, что станция новая - ещё не прошло и года, как первый и пока единственный энергоблок был аттестован Системным оператором и введён в промышленную эксплуатацию. Поэтому мне удалось поснимать ещё не запылившуюся, красивую станцию и узнать много нового для себя о ТЭЦ.

В этом посте, помимо технической информации о КрасТЭЦ-3, я хочу раскрыть сам принцип работы почти любой теплоэлектроцентрали.

1. Три дымовые трубы, высота самой высокой из них 275 м, вторая по высоте - 180м



Сама аббревиатура ТЭЦ подразумевает собой, что станция вырабатывает не только электричество, но и тепло (горячая вода, отопление), причем, выработка тепла возможно даже более приоритетна в нашей известной суровыми зимами стране.

2. Установленная электрическая мощность Красноярской ТЭЦ-3 208 МВт, а установленная тепловая мощность 631,5 Гкал/ч

Упрощенно принцип работы ТЭЦ можно описать следующим образом:

Всё начинается с топлива. В роли топлива на разных электростанциях могут выступать уголь, газ, торф, горючие сланцы. В нашем случае это бурый уголь марки Б2 с Бородинского разреза, расположенного в 162 км от станции. Уголь привозят по железной дороге. Часть его складируется, другая часть идёт по конвеерам в энергоблок, где сам уголь сначала измельчается до пыли и потом подаётся в камеру сгорания - паровой котёл.

Паровой котёл - это агрегат для получения пара с давлением выше атмосферного из непрерывно поступающей в него питательной воды. Происходит это засчет теплоты, выделяющейся при сгорании топлива. Сам котёл выглядит довольно внушительно. На КрасТЭЦ-3 высота котла 78 метров (26-этажный дом), а весит он более 7000 тонн.

6. Паровой котёл марки Еп-670, произведенный в Таганроге. Производительность котла 670 тонн пара в час

Я позаимствовал с сайта energoworld.ru упрощённую схему парового котла электростанции, чтобы вам было понятно его устройтсво

1 — топочная камера (топка); 2 — горизонтальный газоход; 3 — конвективная шахта; 4 — топочные экраны; 5 — потолочные экраны; 6 — спускные трубы; 7 — барабан; 8 — радиационно-конвективный пароперегреватель; 9 — конвективный пароперегреватель; 10 — водяной экономайзер; 11 — воздухоподогреватель; 12 — дутьевой вентилятор; 13 — нижние коллекторы экранов; 14 — шлаковый комод; 15 — холодная коронка; 16 — горелки. На схеме не показаны золоуловитель и дымосос.

7. Вид сверху

10. Отчётливо виден барабан котла. Барабан представляет собой цилиндрический горизонтальный сосуд, имеющий водяной и паровой объемы, которые разделяются поверхностью, называемой зеркалом испарения.

Благодаря большой паропроизводительности котёл имеет развитые поверхности нагрева, как испарительные, так и пароперегревательные. Топка у него призматическая, четырёхугольная с естественной циркуляцией.

Пара слов о принципе работы котла:

В барабан, проходя экономайзер, попадает питательная вода, по спускным трубам спускается в нижние коллекторы экранов из труб, по этим трубам вода поднимается вверх и, соответственно, нагревается, так как внутри топки горит факел. Вода превращается в паро-водяную смесь, часть её попадает в выносные циклоны и другая часть обратно барабан. И там, и там происходит разделение этой смеси на воду и пар. Пар уходит в пароперегреватели, а вода повторяет свой путь.

11. Остывшие дымовые газы (примерно 130 градусов), выходят из топки в электрофильтры. В электрофильтрах происходит очистка газов от золы, зола удаляется на золоотвал, а очищенные дымовые газы уходят в атмосферу. Эффективная степень очистки дымовых газов составляет 99,7%.
На фотографии те самые электрофильтры.

Проходя через пароперегреватели пар нагревается до температуры 545 градусов и поступает в турбину, где под его давлением вращается ротор турбогенератора и, соответственно, вырабатывается электроэнергия. Следует отметить, что в конденсационных электростанциях (ГРЭС) система обращения воды полностью замкнута. Весь пар, проходя сквозь турбину, охлаждается и конденсируется. Снова превратившись в жидкое состояние, вода используется заново. А в турбинах ТЭЦ не весь пар попадает в конденсатор. Осуществляются отборы пара - производственные (использование горячего пара на каких-либо производствах) и теплофикационные (сеть горячего водоснабжения). Это делает ТЭЦ экономически более выгодной, но у неё есть свои минусы. Недостатком теплоэлектроцентралей является то, что они должны быть построены недалеко от конечного потребителя. Прокладка теплотрасс стоит огромных денег.

12. На Красноярской ТЭЦ-3 используется прямоточная система технического водоснабжения, это позволяет отказаться от использование градирен. То есть воду для охлаждения конденсатора и использования в котле берут прямо из Енисея, но перед этим она проходит очистку и обессоливание. После использования вода возвращается по каналу обратно в Енисей, проходя систему рассеивающего выпуска (перемешивание нагретой воды с холодной, дабы снизить тепловое загрязнение реки)

14. Турбогенератор

Я надеюсь, мне удалось внятно описать принцип работы ТЭЦ. Теперь немного о самой КрасТЭЦ-3.

Строительство станции началось ещё в далёком 1981 году, но, как у нас в России бывает, из-за развалов СССР и кризисов построить ТЭЦ вовремя не получилось. С 1992 г до 2012 г станция работала как котельная - нагревала воду, но электричество вырабатывать научилась только 1-го марта прошлого года.

Красноярская ТЭЦ-3 принадлежит Енисейской ТГК-13. На ТЭЦ работает около 560 человек. В настоящее время Красноярская ТЭЦ-3 обеспечивает теплоснабжение промышленных предприятий и жилищно-коммунального сектора Советского района г. Красноярска - в частности, микрорайоны «Северный», «Взлётка», «Покровский» и «Иннокентьевский».

17.

19. ЦПУ

20. Ещё на КрасТЭЦ-3 функционируют 4 водогрейных котла

21. Глазок в топке

23. А это фото снято с крыши энергоблока. Большая труба имеет высоту 180м, та что поменьше - труба пусковой котельной.

24. Трансформаторы

25. В качестве распределительного устройства на КрасТЭЦ-3 используется закрытое распределительное устройство с элегазовой изоляцией (ЗРУЭ) на 220 кВ.

26. Внутри здания

28. Общий вид распределительного устройства

29. На этом всё. Спасибо за внимание

На рис. 1 показана принципиальная тепловая схема промышленно-отопительной ТЭЦ, где введены следующие обозначения: ПГ - парогенератор; Г - генератор; К - конденсатор; П1, П2, П3 - подогреватели высокого давления; ПН - питательный насос; ДПВ - деаэратор питательной воды; П4, П5, П6, П7 - подогреватели низкого давления; СМ1, СМ2, СМ3 - смесители; КН - конденсатный насос; ДН - дренажные насосы; СНI, СНII - сетевые насосы первой и второй ступени; НС, ВС - нижний и верхний сетевой подогреватель; ПВК - пиковый водогрейный котел; ТП - тепловой потребитель; ДКВ - деаэратор обратного конденсата и добавочной воды; Р - расширитель продувочной воды; ОП - охладитель продувочной воды.

Массовые расходы на рис. 1 обозначены следующим образом: D 0 - расход свежего пара; D к - пропуск пара в конденсатор; D 1 , D 2 , D 3 , D 4 , D 5 , D 6 , D 7 - расходы греющего пара на подогреватели; D п - расход пара на производственные нужды; D о.к - расход обратного конденсата; D в.с - расход греющего пара на верхнюю ступень сетевого подогревателя; D н.с - расход греющего пара на нижнюю ступень сетевого подогревателя; D д - расход греющего пара на деаэратор питательной воды; D д(в) - расход греющего пара на деаэратор обратного конденсата и добавочной воды; D пг - паропроизводительность парогенератора; D ут - потери от утечек; D пр - расход продувочной воды; Dґ пр - потери с продувочной водой; Dґ п - выпар из расширителя продувочной воды.

Турбоустановка ПТ имеет параметры свежего пара р 0 = 13 МПа, t 0 = 560 °С; давление в конденсаторе турбины составляет р к = 4 кПа. Коэффициент полезного действия парогенератора пг = 0,92; электромеханический к.п.д. турбины эм = 0,98; к.п.д. транспорта определяется потерями от утечек пара. Турбина имеет производственный отбор с давлением р п = 1,2 МПа в количестве D п т/ч (выбирается согласно варианту) и два теплофикационных отбора с номинальным отпуском тепла Q т0 МВт при расчетном режиме, соответствующем температуре наружного воздуха -5°С. Доля обратного конденсата от производственного потребителя составляет о.к % (от расхода отпущенного пара). Температура обратного конденсата t о.к = 70 °С.

Турбина ПТ двухцилиндровая, расход свежего пара на турбину D 0 =850 т/ч. Внутренний относительный к.п.д. цилиндра высокого давления составляет =0,88; внутренний относительный к.п.д. цилиндра низкого давления составляет =0,8. Потери пара и конденсата от утечек в долях от расхода свежего пара составляют ут =1%. Расход продувочной воды в долях от паропроизводительности парогенератора составляет пр =1,5%. Промышленный отбор осуществляется после цилиндра высокого давления (ЦВД), пар на подогрев сетевой воды отбирается из цилиндра низкого давления (ЦНД).

Основной конденсат и питательная вода подогреваются последовательно в четырех подогревателях низкого давления, в деаэраторе питательной воды ДКВ с давлением 0,6 МПа и в трех подогревателях высокого давления. Отпуск пара на эти подогреватели осуществляется из трех регулируемых и четырех нерегулируемых отборов пара.

Пар на подогреватели П1 и П2 отбирается отбирается из ЦВД, на подогреватель П3 и деаэратор ДПВ - из регулируемого промышленного отбора за ЦВД, на подогреватели П4 и П5 - из нерегулируемых отборов ЦНД, и на подогреватели П6 и П7 - из регулируемых теплофикационных отборов.

Подогреватели П1 и П2 имеют встроенные охладители дренажа. Энтальпия охлажденного дренажа превышает энтальпию воды на входе в данный подогреватель на величину од = 25 кДж/кг. Недогрев воды до температуры конденсации греющего пара в подогревателях высокого давления (П1, П2, П3) составляет нед = 3 °С, в подогревателях низкого давления (П4, П5, П6, П7) - нед = 5 °С.

Дренаж из подогревателей высокого давления сливается каскадно в деаэратор. Из П4 дренаж сливается в П5 и затем в П6, откуда дренажным насосом подается в смеситель СМ1 на линии основного конденсата между П5 и П6. Из П7 дренаж сливается в смеситель СМ3 перед конденсатным насосом КН.

Конденсат греющего пара из верхнего и нижнего сетевых подогревателей ВС и НС соответственно подаются дренажными насосами в смесители СМ1 между подогревателями П5 и П6 и СМ2 между подогревателями П6 и П7. Подогрев сетевой воды предусматривается последовательно в двух сетевых подогревателях. На входе в нижний сетевой подогреватель температура обратной сетевой воды составляет t о.с = 35 °С. Недогрев сетевой воды до температуры конденсации греющего пара в обоих подогревателях составляет нед = 2 °С. Насосы сетевой воды СНI установлены перед сетевыми подогревателями, сетевые насосы СНII - после сетевых подогревателей, перед пиковыми водогрейными котлами ПВК. Добавочная вода, восполняющая потери пара и конденсата, подогревается сначала в охладителе продувочной воды ОП, затем в деаэраторе ДКВ, где подогревается также обратный конденсат производственного отбора. В охладителе продувки ОП продувочная вода охлаждается до температуры, которая на о.п = 10 °С превышает температуру добавочной воды, нагретой в охладителе продувки. Исходная температура добавочной воды t дв = 20 °С. Деаэратор ДКВ обогревается паром из верхнего теплофикационного отбора, давление в деаэраторе поддерживается равным 0,12 МПа. Общий поток воды из ДКВ перекачивается в смеситель СМ1.Значения давлений пара в отборах турбины приведены в таблице 1. Остальные параметры приведены в таблице 2.

Строительные кампании Москвы, возводящие новостройки Москвы менее всего заботятся об экологической безопасности, квартиры в новостройках Москвы строятся и у ТЭЦ, и возле мусоросжигательных заводов и на свалках радиации. Всего за год московские ТЭЦ выбрасывают в атмосферу более ста тысяч тонн вредных газов- по 11 килограмм на каждого москвича (одиннадцать килограмм газов).

ТЭЦ Москвы- основные загрязняющие предприятия Москвы

Москве окружена тройным кольцом ТЭЦ. Наиболее плотная концентрация тепловых станций- на юге. Посмотреть расположение ТЭЦ и радиусы загрязнения можно на главной странице сайта, на карте- нажав кнопки "ТЭЦ и тепловые станции" и "Показать".

ТЭЦ выбрасывает , наиболее распространенными из которых являются угарный газ, твердые частицы, оксид азота и диоксид серы.

Воздействие ТЭЦ на человека:

  • Ароматические углеводороды имеют серьезное канцерогенное воздействие (продукты сгорания газа и мазута).
  • Тяжелые металлы накапливаются в органах людей и кроме этого, попадая в почву и воду, проникают с продуктами и водой в организм людей.
  • Залповые выбросы- серы, и твердых частиц, так называемых , поражают легкие и бронхи.
  • серьезно влияет на нервную систему и сердечно- сосудистую системы, вызывают стресс.
  • Каждая ТЭЦ сжигает огромное количество кислорода и производит сотни тысяч тонн золы.
Купить квартиру в Москве в опасном районе- значит смело вычеркнуть пять лет жизни. Количество онкологических заболеваний у людей, живущих у ТЭЦ, в два раза выше обычных уровней. Конечно, существует еще масса факторов, влияющих на выбор района.


Прежде, чем смотреть новостройки в Москве "от застройщика", не лишне посмотреть список ТЭЦ и . Ознакомьтесь так же со по округам с их четким расположением на карте и полным перечнем грязных производств.

Адреса ТЭЦ в Москве

ТЭЦ-8 адрес Остаповский проезд, дом 1. Метро Волгоградский проспект.

  1. ТЭЦ-9 адрес Автозаводская, дом 12, корп.1. Метро Автозаводская.
  2. ТЭЦ-11 адрес ш. Энтузиастов, дом 32. Метро Авиамоторная.
  3. ТЭЦ-12 адрес Бережковская наб., дом 16. Метро Студенческая.
  4. ТЭЦ-16 адрес ул. 3-я Хорошевская, дом 14. Метро Полежаевская.
  5. ТЭЦ-20 адрес ул. Вавилова, дом 13. Метро Ленинский проспект.
  6. ТЭЦ-21 адрес ул. Ижорская, дом 9. Метро Речной Вокзал.
  7. ТЭЦ-23 адрес ул. Монтажная, дом 1/4. Метро ул.Подбельского.
  8. ТЭЦ-25 адрес ул. Генерала Дорохова, дом 16. Метро Кунцевская.
  9. ТЭЦ-26 адрес ул. Востряковский проезд, дом 10. Метро Аннино.
  10. ТЭЦ-28 адрес ул. Ижорская, дом 13. Метро Алтуфьево.
  11. ТЭЦ-27 адрес Мытищенский район, п.Челобитьево (за МКАД).
  12. ТЭЦ-22 адрес г.Дзержинский ул. Энергетиков, дом 5 (за МКАД).

Адреса районных тепловых станций в Москве

  1. Бабушкинская-1 Искры ул., д. 17
  2. Бабушкинская-2 Искры ул., д. 17б
  3. Бирюлево ЛЕБЕДЯНСКАЯ УЛ. д. 3
  4. Волхонка-Зил Азовская 28
  5. Жулебино ЛЕРМОНТОВСКИЙ ПРОСП. д. 147 с. 1
  6. Коломенская Котляковский 1-й пер., д. 5
  7. Красная Пресня Магистральная 2-я ул., д. 7а
  8. Красный Строитель Дорожная ул., д. 9а
  9. Крылатское Осенняя ул., д. 29
  10. Кунцево ВЕРЕЙСКАЯ УЛ. д. 35
  11. Ленино-Дачное Кавказский бульв., д. 52
  12. Матвеевская Очаковское ш., д. 14
  13. Митино (РТС-38) Пятницкое ш., д. 19
  14. Нагатино Андропова просп., д. 36 корп 2
  15. Новомосковская Новомосковская ул., д. 1а
  16. Отрадное Сигнальный пр., д. 21
  17. Пенягино (РТС-40) Дубравная ул., д. 55
  18. Переделкино БОРОВСКОЕ Ш. д. 10
  19. Переяславская Переяславская Б. ул., д. 36
  20. Перово Кетчерская ул., д. 12
  21. Ростокино МИРА ПРОСП. д. 207
  22. Рублево ОРШАНСКАЯ УЛ. д. 6 корп. 2
  23. Солнцево ЩОРСА УЛ. д. 11 с. 1
  24. Строгино Лыковская 2-я ул., д. 67
  25. Теплый стан Новоясеневский просп., д. д.8,к.3
  26. Тушино-1 (РТС-31) Планерная ул., д. 2
  27. Тушино-2 (РТС-32) Фабрициуса ул., д. 37
  28. Тушино-3 (РТС-37) Походный пр., д. 2
  29. Тушино-4 (РТС-39) СТРОИТЕЛЬНЫЙ ПР. д. 12
  30. Фрезер Фрезер ш., д. 14
  31. Химки-Ховрино Беломорская ул., д. 38а
  32. Чертаново Днепропетровская ул., д. 12

На основании СанПиН 2.2.1/2.1.1.1200-03, ТЭС и районные котельные, как особо опасные поражающие объекты относятся к первому классу опасности:

Основные выбросы ТЭЦ:


Диоксид азота (бурый газ) Используется в качестве окислителя.Оксид азота высокотоксичен. Даже в небольших дозах раздражает дыхательные пути, легкие, бронхи, а в больших концентрациях вызывает отек легких.

Оксид углерода (угарный газ) чрезвычайно опасен- не имеет запаха, вызывает отравление и смерть. Признаки отравления: головокружение и головная боль; шум в ушах, одышка, Марцание в глазах, сердцебиение, покраснение лица, слабость, тошнота, рвота; иногда судороги, потеря сознания, кома.

Основная задача ТЭЦ – обеспечение надежной подачи потребителям пара заданных параметров и горячей воды при заданных температуре и расходе. Поскольку ТЭЦ при работе в режимах с отборами имеют наименьший удельный расход топлива, при покрытии электрического графика нагрузки они должны занимать его базовую часть и, следовательно, их участие в регулировании мощности большей частью ограничено. В то же время ТЭЦ, имеющие преобладающую отопительную нагрузку, в летнее время часто привлекаются к работе преимущественно по конденсационному режиму и потому в этот период участвуют в регулировании мощности в системе.

Привлечение ТЭЦ к регулированию электрической мощности как в часы пик за счет сокращения теплофикационного отбора и увеличения конденсационной мощности, так и в часы провала нагрузки за счет разгрузки турбин является вынужденным мероприятием, имеющим следствием значительный перерасход топлива на ТЭЦ и в энергосистеме в целом.

Выше уже отмечен сезонный характер режимов работы ТЭЦ, которые в летний период разгружаются по отборам и соответственно по свежему пару, в результате чего часть котлов высвобождается и выводится в резерв или в ремонт. Топливоснабжение ряда ТЭЦ также носит сезонный характер: уголь и мазут – зимой, природный газ – летом. Работа котлов на газе снижает их минимальную допустимую нагрузку и облегчает возможность маневрирования при сниженной нагрузке летом как числом работающих парогенераторов, так и их разгрузкой.

Большинство ТЭЦ имеет неблочную схему при отсутствии промежуточного перегрева пара, что сказывается как на конструкциях котлов ТЭЦ, так и на режимах их работы. Неблочная схема позволяет выводить часть котлов в резерв при снижении потребления свежего пара турбинами подобно тому, как это было описано выше (гл. 2) для неблочных КЭС.

На ТЭЦ с начальным давлением пара 12,75 МПа применяются исключительно барабанные котлы с непрерывной продувкой котловой воды.

Применение на отопительных ТЭЦ энергоблоков на закритическое давление пара с прямоточными котлами и турбинами Т-250-240 приводит к изменению режимов работы ТЭЦ в сторону приближения их к режимам блочных КЭС, так же как и с турбинами Т-180 с промперегревом. На некоторых ТЭЦ с турбинами мощностью Т-100-130 и с котлами, работающими на газомазутном топливе, был осуществлен переход к блочной схеме, что так же приблизило режимы работы котлов к условиям блочной КЭС.

На значительном числе ТЭЦ система водоснабжения оборотная, с градирнями. Работа системы водоснабжения на ТЭЦ также носит сезонный характер. В зимнее время паровая нагрузка конденсаторов отопительных ТЭЦ резко сокращается. При работе теплофикационных турбин в режиме трехступенчатого подогрева конденсаторы охлаждаются сетевой водой и циркуляция охлаждающей воды уменьшается столь значительно, что часть градирен приходится выводить в резерв и принимать меры против замораживания действующих градирен.

В летний период паровая нагрузка конденсаторов таких ТЭЦ увеличивается и возникают трудности с поддержанием достаточно глубокого вакуума, что обусловлено повышенной температурой воды, охлаждаемой в градирнях, а также, как правило, недостаточной производительностью градирен. При повышении температуры охлаждающей воды сверх 33 °С приходится снижать паровую нагрузку конденсаторов.

Для поддержания нормального вакуума необходимо обеспечивать чистоту конденсаторов, что повышает требования к солесодержанию оборотной воды.

К особенностям ТЭЦ относится наличие дополнительного по сравнению с КЭС оборудования водоподогревательных установок: сетевых подогревателей, сетевых насосов, пиковых водогрейных котлов.

При работе турбин в теплофикационных режимах выработка электроэнергии на тепловом потреблении определяется в основном давлением пара в теплофикационных отборах, которое зависит от режима тепловой нагрузки и от чистоты поверхностей нагрева сетевых подогревателей.

В тех случаях, когда пиковые водогрейные котлы обычно работают на сернистом мазуте, они подвержены низкотемпературной коррозии, для предотвращения которой необходимо, чтобы температура сетевой воды на входе в водогрейный котел при всех режимах была выше 105 °С . Такая же температура необходима для того, чтобы пиковые котлы могли развивать расчетную тепловую мощность.

Поскольку температура сетевой воды после сетевых подогревателей при многих длительных режимах оказывается ниже 105 °С, предусмотрена схема рециркуляции сетевой воды, показанная на рис. 4-1.

К пиковому водогрейному котлу подводится сетевая вода G СВ при постоянной температуре 105°С. В то же время из сетевой подогревательной установки в подающую тепловую сеть направляется расход сетевой воды G СВ при температуре t СВ, которые определяются режимом тепловой нагрузки. Для того чтобы посредством рециркуляции сетевой воды с расходом G Ц обеспечить на входе в водогрейный котел для всех режимов 105 °С, надо поддерживать за водогрейным котлом температуру t пвк >105°С. Поэтому в диапазоне режимов, в которых температура сетевой воды в подающей линии t ПС <105 °С, необходимо, чтобы t пвк > t ПС.

Температура и расход сетевой воды в подающей линии t ПС и G С B достигаются за счет перепуска части сетевой воды G обв по обводной линии.

Следует отметить, что большие трудности в работе водогрейных котлов создают нарушения водного режима тепловой сети (подпитка сырой водой).



error: Content is protected !!