Выпуклость технологического множества элемента означает. Теория производства

2. Производственные множества и производственные функции

2.1. Производственные множества и их свойства

Рассмотрим важнейшего участника экономических процессов – отдельного производителя. Производитель реализует свои цели только через потребителя и поэтому должен угадать, понять, что тот хочет, и удовлетворить его потребности. Будем считать, что имеется n различных товаров, количество n-го товара обозначается х n , тогда некоторый набор товаров обозначается Х = (x 1 , …, x n). Будем рассматривать только неотрицательные количества товаров, так что х i  0 для любого i = 1, ..., n или Х > 0. Множество всех наборов товаров называется пространством товаров С. Набор товаров можно трактовать как корзину, в которой лежат эти товары в соответствующем количестве.

Пусть экономика работает в пространстве товаров С = {X = (x 1 , x 2 , …, x n): x 1 , …, x n  0}. Пространство товаров состоит из неотрицательных n-мерных векторов. Рассмотрим теперь вектор T размерности n, первые m компонентов которого неположительные: x 1 , …, x m  0, а последние (n-m) компонентов неотрицательны: x m +1 , …, x n  0. Вектор X = (x 1 ,…, x m) назовем вектором затрат , а вектор Y = (x m+1 , …, x n) – вектором выпуска . Сам же вектор T = (X,Y) назовем вектором затрат-выпуска, или технологией .

По своему смыслу технология (X,Y) есть способ переработки ресурсов в готовую продукцию: «смешав» ресурсы в количестве X, получим продукцию в размере Y. Каждый конкретный производитель характеризуется некоторым множеством τ технологий, которое называется производственным множеством . Типичное заштрихованное множество представлено на рис. 2.1. Данный производитель затрачивает один товар для выпуска другого.

Рис. 2.1. Производственное множество

Производственное множество отражает широту возможностей производителя: чем оно больше, тем шире его возможности. Производственное множество должно удовлетворять следующим условиям:

    оно замкнуто – это означает, что если вектор Т затрат-выпуска сколь угодно точно приближается векторами из τ, то и Т принадлежит τ (если все точки вектора Т лежат в τ, то Тτ см. рис. 2.1 точки С и В);

    в τ(-τ) = {0}, т. е. если Tτ, T ≠ 0, то -Тτ – нельзя поменять местами затраты и выпуск, т. е. производство – необратимый процесс (множество – τ находится в четвертом квадранте, где у 0);

    множество выпукло, это предположение ведет к уменьшению отдачи от перерабатываемых ресурсов с ростом объемов производства (к увеличению норм расхода затрат на готовую продукцию). Так, из рис. 2.1 ясно, что y/x  убывает при х  -. В частности, предположение о выпуклости ведет к уменьшению производительности труда с ростом объема производства.

Часто выпуклости просто бывает недостаточно, и тогда требуют строгой выпуклости производственного множества (или некоторой его части).

2.2. “Кривая” производственных возможностей

и вмененные издержки

Рассматриваемое понятие производственного множества отличается высокой степенью абстрактности и в силу чрезвычайной общности малопригодно для экономической теории.

Рассмотрим, например рис. 2.1. Начнем с точек В и С. Затраты по этим технологиям одинаковы, а выпуск разный. Производитель, если он не лишен здравого смысла, никогда не выберет технологию В, раз есть более лучшая технология С. В данном случае (см. рис. 2.1), найдем для каждого x  0 самую высокую точку (x, y) в производственном множестве. Очевидно, при затратах х технология (x, y) самая лучшая. Никакая технология (x, b) c b производственной функцией. Точное определение производственной функции:

Y = f(x)(x, y) τ, и если (x, b)  τ и b  y, то b = x.

Из рис. 2.1 видно, что для всякого x  0 такая точка y = f(x) единственна, что, собственно, и позволяет говорить о производственной функции. Но так просто дело обстоит, если выпускается только один товар. В общем случае для вектора затрат Х обозначим множество М х = {Y:(X,Y)τ}. Множество М х – это множество всех возможных выпусков при затратах Х. В этом множестве рассмотрим “кривую” производственных возможностей K x = {YМ х: если ZМ х и Z  Y, то Z = X}, т. е. K x – это множество лучших выпусков, лучше которых нет . Если выпускаются два товара, то это кривая, если же выпускается более двух товаров, то это поверхность, тело или множество еще большей размерности.

Итак, для любого вектора затрат Х все наилучшие выпуски лежат на кривой (поверхности) производственных возможностей. Поэтому из экономических соображений оттуда и должен выбрать производитель технологию. Для случая выпуска двух товаров y 1 , y 2 картина показана на рис. 2.2.

Если оперировать только натуральными показателями (тоннами, метрами и т. д.), то для данного вектора затрат Х мы лишь должны выбрать вектор выпуска Y на кривой производственных возможностей, но какой конкретно выпуск надо выбрать, решить еще нельзя. Если само производственное множество τ выпукло, то и М х выпукло для любого вектора затрат Х. В дальнейшем нам понадобится строгая выпуклость множества М х. В случае выпуска двух товаров это означает, что касательная к кривой производственных возможностей K x имеет с этой кривой только одну общую точку.

Рис. 2.2. Кривая производственных возможностей

Рассмотрим теперь вопрос о так называемых вмененных издержках . Предположим, что выпуск фиксирован в точке A(y 1 , y 2), см. рис. 2.2. Теперь возникла необходимость увеличить выпуск 2-го товара на y 2 , используя, конечно, прежний набор затрат. Сделать это можно, как видно из рис. 2.2, перенеся технологию в точку В, для чего с увеличением выпуска второго товара на y 2 придется уменьшить выпуск первого товара на y 1 .

Вмененными издержками первого товара по отношению ко второму в точке А называется
. Если кривая производственных возможностей задана неявным уравнением F(y 1 ,y 2) = 0, то δ 1 2 (A) = (F/y 2)/(F/y 1), где частные производные взяты в точке А. Если внимательно вглядеться в рассматриваемый рисунок, то можно обнаружить любопытную закономерность: при движении слева вниз по кривой производственных возможностей вмененные издержки уменьшаются от очень больших величин до очень малых.

2.3. Производственные функции и их свойства

Производственной функцией называется аналитическое соотношение, связывающее переменные величины затрат (факторов, ресурсов) с величиной выпуска продукции. Исторически одними из первых работ по построению и использованию производственных функций были работы по анализу сельскохозяйственного производства в США. В 1909 г. Митчерлих предложил нелинейную производственную функцию: удобрения – урожайность. Независимо от него Спиллман предложил показательное уравнение урожайности. На их основе был построен ряд других агротехнических производственных функций.

Производственные функции предназначены для моделирования процесса производства некоторой хозяйственной единицы: отдельной фирмы, отрасли или всей экономики государства в целом. С помощью производственных функций решаются задачи:

    оценки отдачи ресурсов в производственном процессе;

    прогнозирования экономического роста;

    разработки вариантов плана развития производства;

    оптимизации функционирования хозяйственной единицы при условии заданного критерия и ограничений по ресурсам.

Общий вид производственной функции: Y = Y(X 1 , X 2 , …, X i , …, X n), где Y – показатель, характеризующий результаты производства; X – факторный показатель i-го производственного ресурса; n – количество факторных показателей.

Производственные функции определяются двумя группами предположений: математических и экономических. Математически предполагается, что производственная функция должна быть непрерывной и дважды дифференцируемой. Экономические предположения состоят в следующем: при отсутствии хотя бы одного производственного ресурса производство невозможно, т. е. Y(0, X 2 , …, X i , …, X n) =

Y(X 1 , 0, …, X i , …, X n) = …

Y(X 1 , X 2 , …, 0, …, X n) = …

Y(X 1 , X 2 , …, X i , …, 0) = 0.

Однако, только с помощью натуральных показателей определить для данных затрат Х единственный выпуск Y удовлетворительно не удается: наш выбор сузился лишь до «кривой» производственных возможностей K x . В силу этих причин разработана лишь теория производственных функций производителей, выпуск которых можно охарактеризовать одной величиной – либо объемом выпуска, если выпускается один товар, либо суммарной стоимостью всего выпуска.

Пространство затрат m-мерно. Каждой точке пространства затрат Х = (х 1 , …, х m) соответствует единственный максимальный выпуск (см. рис. 2.1), произведенный при использовании этих затрат. Эта связь и называется производственной функцией. Однако обычно производственную функцию понимают не столь ограничительно и всякую функциональную связь между затратами и выпуском считают производственной функцией. В дальнейшем будем считать, что производственная функция имеет необходимые производные. Предполагается, что производственная функция f(X) удовлетворяет двум аксиомам. Первая из них утверждает, что существует подмножество пространства затрат, называемое экономической областью Е, в которой увеличение любого вида затрат не приводит к уменьшению выпуска. Таким образом, если X 1 , X 2 – две точки этой области, то X 1  X 2 влечет f(X 1)  f(X 2). В дифференциальной форме это выражается в том, что в этой области все первые частные производные функции неотрицательны: f/x 1 ≥ 0 (у любой возрастающей функции производная больше нуля). Эти производные называются предельными продуктами , а вектор f/X = (f/x 1 , …, f/x m) – вектором предельных продуктов (показывает во сколько раз изменится выпуск продукции при изменении затрат).

Вторая аксиома утверждает, что существует выпуклое подмножество S экономической области, для которой подмножества {XS:f(X)  a} выпуклы для всех а  0. В этом подмножестве S матрица Гёссе, составленная из вторых производных функции f(X), отрицательно определена, следовательно,  2 f/x 2 i

Остановимся на экономическом содержании этих аксиом. Первая аксиома утверждает, что производственная функция не какая-то совершенно абстрактная функция, придуманная теоретиком-математиком. Она, пусть и не на всей своей области определения, а только лишь на ее части, отражает экономически важное, бесспорное и в то же время тривиальное утверждение: в разумной экономике увеличение затрат не может привести к уменьшению выпуска. Из второй аксиомы поясним только экономический смысл требования, чтобы производная  2 f/x 2 i была меньше нуля для каждого вида затрат. Это свойство называется в экономике за коном убывающей отдачи или убывающей доходности : по мере увеличения затрат, начиная с некоторого момента (при входе в область S!), на чинает уменьшаться предельный продукт. Классическим примером этого закона является добавление все большего и большего количества труда в производство зерна на фиксированном участке земли. В дальнейшем подразумевается, что производственная функция рассматривается на области S, в которой обе аксиомы справедливы.

Составить производственную функцию данного предприятия можно, даже ничего не зная о нем. Надо только поставить у ворот предприятия счетчик (человека или какое-то автоматическое устройство), который будет фиксировать Х – ввозимые ресурсы и Y – количество продукции, которую предприятие произвело. Если накопить достаточно много такой статической информации, учесть работу предприятия в различных режимах, то потом можно прогнозировать выпуск продукции, зная только объем ввезенных ресурсов, а это и есть знание производственной функции.

2.4. Производственная функция Кобба-Дугласа

Рассмотрим одну из наиболее распространенных производственных функций – функцию Кобба-Дугласа: Y = AK  L  , где A, ,  > 0 – константы,  + 

Y/K = AαK α -1 L β > 0, Y/L = AβK α L β -1 > 0.

Отрицательность вторых частных производных, т. е. убывание предельных продуктов: Y 2 /K 2 = Aα(α–1)K α -2 L β 0.

Перейдем к основным экономико-математическим характеристикам производственной функции Кобба-Дугласа. Средняя производительность труда определяется как y = Y/L – отношение объема произведенного продукта к количеству затраченного труда ; средняя фондоотдача k = Y/K – отношение объема произведенного продукта к величине фондов .

Для функции Кобба-Дугласа средняя производительность труда y = AK  L  , и в силу условия  с увеличением затрат труда средняя производительность труда падает. Этот вывод допускает естественное объяснение – поскольку величина второго фактора К остается неизменной, то, значит, вновь привлекаемая рабочая сила не обеспечивается дополнительными средствами производства, что и приводит к снижению производительности труда (это справедливо и в самом общем случае – на уровне производственных множеств).

Предельная производительность труда Y/L = AβK α L β -1 > 0, откуда видно, что для функции Кобба-Дугласа предельная производительность труда пропорциональна средней производительности и меньше ее. Аналогично определяются средняя и предельная фондоотдачи. Для них также справедливо указанное соотношение – предельная фондоотдача пропорциональна средней фондоотдаче и меньше ее.

Важное значение имеет такая характеристика, как фондовооруженность f = K/L, показывающая объем фондов, приходящийся на одного работника (на одну единицу труда) .

Найдем теперь эластичность продукции по труду:

(Y/L):(Y/L) = (Y/L)L/Y = AβK α L β -1 L/(AK α L β) = β.

Таким образом, ясен смысл параметра – это эластичность (отношение предельной производительности труда к средней производительности труда) продукции по труду . Эластичность продукции по труду означает, что для увеличения выпуска продукции на 1 % необходимо увеличить объем трудовых ресурсов на  %. Аналогичный смысл имеет параметр  – это эластичность продукции по фондам .

И еще одно значение представляется интересным. Пусть  +  = 1. Легко проверить, что Y = (Y/K)/K + (Y/L)L (подставляя уже вычисленные ранее Y/K, Y/L в эту формулу). Будем считать, что общество состоит только из рабочих и предпринимателей. Тогда доход Y распадается на две части – доход рабочих и доход предпринимателей. Поскольку при оптимальном размере фирмы величина Y/L – предельный продукт по труду – совпадает с заработной платой (это можно доказать), то (Y/L)L представляет собой доход рабочих. Аналогично величина Y/K есть предельная фондоотдача, экономический смысл которой есть норма прибыли, следовательно, (Y/K)K представляет доход предпринимателей.

Функция Кобба-Дугласа – наиболее известная среди всех производственных функций. На практике при ее построении иногда отказываются от некоторых требований (например, сумма  +  может быть больше 1 и т. п.).

Пример 1. Пусть производственная функция есть функция Кобба-Дугласа. Чтобы увеличить выпуск продукции на а = 3 %, надо увеличить основные фонды на b = 6 % или численность работников на c = 9 %. В настоящее время один работник за месяц производит продукции на М = 10 4 руб. , а всего работников L = 1000. Основные фонды оцениваются в K = 10 8 руб. Найти производственную функцию.

Решение. Найдем коэффициенты , :  = а/b = 3/6 = 1/2,  = а/с = = 3/9 = 1/3, следовательно, Y = AK 1/2 L 1/3 . Для нахождения А подставим в эту формулу значения K, L, M, имея в виду, что Y = ML = 1000 . 10 4 = 10 7 – – 10 7 = А(10 8) 1/2 1000 1/3 . Отсюда А = 100. Таким образом, производственная функция имеет вид: Y = 100K 1/2 L 1/3 .

2.5. Теория фирмы

В предыдущем разделе мы, анализируя, моделируя поведение производителя, использовали только натуральные показатели и обошлись без цен, однако не смогли окончательно решить задачу производителя, т. е. указать единственный способ действий для него в сложившихся условиях. Теперь введем в рассмотрение цены. Пусть Р – вектор цен. Если Т = (X,Y) – технология, т. е. вектор «затраты-выпуск», X – затраты, Y – выпуск, то скалярное произведение PT = PX + PY есть прибыль от использования технологии Т (затраты – отрицательные количества). Теперь сформулируем математическую формализацию аксиомы, описывающей поведение производителя.

Задача производителя: производитель выбирает технологию из своего производственного множества, стремясь максимизировать прибыль. Итак, производитель решает следующую задачу: РТ→max, Tτ. Эта аксиома резко упрощает ситуацию выбора. Так, если цены положительны, что естественно, то компонента «выпуск» решения этой задачи автоматически будет лежать на кривой производственных возможностей. Действительно, пусть T = (X,Y) – какое-нибудь решение задачи производителя. Тогда существует ZK x , Z  Y, следовательно, P(X, Z)  P(X, Y), значит, точка (X, Z) также есть решение задачи производителя.

Для случая двух видов продуктов задачу можно решить графически (рис. 2.3). Для этого надо «двигать» прямую линию, перпендикулярную вектору Р, в направлении, куда он показывает; тогда последняя точка, когда эта прямая линия еще пересекает производственное множество, и будет решением (на рис. 2.3. это точка Т). Как легко видеть, строгая выпуклость нужной части производственного множества во втором квадранте гарантирует единственность решения. Такие же рассуждения действуют и в общем случае, для большего числа видов затрат и выпуска. Однако мы не пойдем по этому пути, а используем аппарат производственных функций и производителя назовем фирмой. Итак, выпуск фирмы можно охарактеризовать одной величиной – либо объемом выпуска, если выпускается один товар, либо суммарной стоимостью всего выпуска. Пространство затрат m-мерно, вектор затрат Х = (х 1 , …, х m). Затраты однозначно определяют выпуск Y, а эта связь и есть производственная функция Y = f(X).

Рис. 2.3. Решение задачи производителя

В данной ситуации обозначим через Р вектор цен на товары-затраты и пусть v – цена единицы выпускаемого товара. Следовательно, прибыль W, являющаяся в итоге функцией Х (и цен, но они считаются постоянными), есть W(X) = vf(X) – PX→max, X  0. Приравнивая частные производные функции W к нулю, получим:

v(f/x j) = p j для j = 1, …, m или v(f/X) = P (2.1)

Будем предполагать, что все затраты строго положительны (нулевые можно просто исключить из рассмотрения). Тогда точка, даваемая соотношением (2.1), оказывается внутренней, т. е. точкой экстремума. И поскольку еще предполагается отрицательная определенность матрицы Гёссе производственной функции f(Х) (исходя из требований к производственным функциям), то это точка максимума.

Итак, при естественных предположениях на производственные функции (эти предположения выполняются для производителя со здравым смыслом и в разумной экономике) соотношение (2.1) дает решение задачи фирмы, т. е. определяет объем Х * перерабатываемых ресурсов, в результате чего получается выпуск Y * = f(Х *) Точку Х * , или (Х * ,f(Х *)) назовем оптимальным решением фирмы. Остановимся на экономическом смысле соотношения (2.1). Как говорилось, (f/X) = (f/x 1 ,…,f/x m) называется предельным вектором-продуктом, или вектором предельных продуктов , а f/x i называется i-м предельным продуктом , или откликом выпуска на изменение i-го товара затрат . Следовательно, vf/x i dx i – это стоимость i-го предельного продукта, дополнительно полученного из dx i единиц i-го ресурса . Однако стоимость dx i единиц i-го ресурса равна р i dx i , т. е. получилось равновесие: можно вовлечь в производство дополнительно dx i единиц i-го ресурса, потратив на его закупку р i dx i , но выигрыша не будет, т. к. получим после переработки продукции ровно на такую же сумму, сколько затратили. Соответственно, оптимальная точка, даваемая соотношением (2.1), является точкой равновесия – уже невозможно выжать из товаров-ресурсов больше, чем затрачено на их покупку.

Очевидно, наращивание выпуска фирмы происходило постепенно: сначала стоимость предельных продуктов была меньше покупной цены потребных для их производства товаров-ресурсов. Наращивание объемов производства идет до тех пор, пока не начнет выполняться соотношение (2.1): равенство стоимости предельных продуктов и покупной цены, потребных для их производства товаров-ресурсов.

Предположим, что в задаче фирмы W(X) = vf(X) – PX → max, X  0, решение Х * единственное для v > 0 и Р > 0. Таким образом, получается вектор-функция X * = X * (v, P), или функции x * I = x * i (v, p 1 , p m) для i = 1, …, m. Эти m функций называются функциями спроса на ресурсы при данных ценах на продукцию и ресурсы. Содержательно эти функции означают, что, если сложились цены Р на ресурсы и цена v на выпускаемый товар, данный производитель (характеризующийся данной производственной функцией) определяет объем перерабатываемых ресурсов по функциям x * I = x * i (v, p 1 , p m) и спрашивает эти объемы на рынке. Зная объемы перерабатываемых ресурсов и подставляя их в производственную функцию, получим выпуск как функцию цен; обозначим эту функцию через q * = q * (v,P) = f(X(v,P)) = Y * . Она называется функцией предложения продукции в зависимости от цены v на продукцию и цен Р на ресурсы.

По определению, ресурс i-го вида называется малоценным , если и только если, x * i /v т. е. при повышении цены на продукцию спрос на малоценный ресурс уменьшается. Удается доказать важное соотношение: q * /P = -X * /v или q * /p i = -x * i /v, для i = 1, …, m. Следовательно, возрастание цены продукции приводит к повышению (понижению) спроса на определенный вид ресурсов, если и только если увеличении платы за этот ресурс приводит к сокращению (возрастанию) оптимального выпуска. Отсюда видно основное свойство малоценных ресурсов: увеличение платы за них ведет к увеличению выпуска продукции! Однако можно строго доказать наличие таких ресурсов, возрастание платы за которые приводит к уменьшению выпуска продукции (т.е. все ресурсы не могут быть малоценными) .

Удается доказать также, что x * i /p i взаимодополняемыми, если x * i /p j взаимозаменяемыми, если x * i /p j > 0. То есть, для взаимодополняемых ресурсов повышение цены на один из них приводит к падению спроса на другой, а для взаимозаменяемых ресурсов повышение цены на один из них приводит к увеличению спроса на другой. Примеры взаимодополняемых ресурсов: компьютер и его составляющие, мебель и дерево, шампунь и кондиционер к нему. Примеры взаимозаменяемых ресурсов: сахар и заменители сахара (например, сорбит), арбузы и дыни, майонез и сметана, масло и маргарин и т. д.

Пример 2. Для фирмы с производственной функцией Y = 100K 1/2 L 1/3 (из примера 1) найти оптимальный размер, если период амортизации основных фондов N=12 месяцев, зарплата работника в месяц а = 1000 руб.

Решение. Оптимальный размер выпуска или объема производства находится из соотношения (2.1). В данном случае выпуск продукции измеряется в денежном выражении, так что v = 1. Стоимость месячного содержания одного рубля фондов 1/N, т. е. получаем систему уравнений

, решая которую находим ответ:
, L = 8 . 10 3 , K = 144 . 10 6 .

2.6. Задачи

1. Пусть производственная функция есть функция Кобба-Дугласа. Чтобы увеличить выпуск продукции на 1 %, надо увеличить основные фонды на b = 4 % или численность работников на c = 3 %. В настоящее время один работник за месяц производит продукции на М = 10 5 руб. , а всего работников L = 10 4 . Основные фонды оцениваются в K = 10 6 руб. Найдите производственную функцию, среднюю фондоотдачу, среднюю производительность труда, фондовооруженность.

2. Группа «челноков» в количестве Е решила объединиться с N продавцами. Прибыль от дня работы (выручка минус расходы, но не зарплата) выражается формулой Y = 600(EN) 1/3 . Зарплата «челнока» 120 руб. в день, продавца – 80 руб. в день. Найдите оптимальный состав группы из «челноков» и продавцов, т. е. сколько должно быть «челноков» и сколько продавцов.

3. Бизнесмен решил основать небольшое автотранспортное предприятие. Ознакомившись со статистикой, он увидел, что примерная зависимость ежедневной выручки от числа автомашин А и числа N выражается формулой Y = 900А 1/2 N 1/4 . Амортизационные и другие ежедневные расходы на одну машину равны 400 руб., ежедневная зарплата рабочего 100 руб. Найдите оптимальную численность рабочих и автомашин.

4. Бизнесмен задумал открыть пивной бар. Предположим, что зависимость выручки Y (за вычетом стоимости пива и закусок) от числа столиков М и числа официантов F выражается формулой Y = 200М 2/3 F 1/4 . Расходы на один столик составляют 50 руб., зарплата официанта – 100 руб. Найдите оптимальный размер бара, т. е. число официантов и столиков.

Министерство образования и науки Российской Федерации

Новгородский государственный университет имени Ярослава Мудрого

Реферат по дисциплине:

Менеджмент

Выполнила студентка гр.6061 зо

Макарова С.В.

Принял Сучков А.В.

Великий Новгород

1. ПРОИЗВОДСТВЕННЫЙ ПРОЦЕСС И ЕГО ЭЛЕМЕНТЫ.

Основу производственно-хозяйственной деятельности предприятия составляет производственный процесс, который представляет собой совокупность взаимосвязанных процессов труда и естественных процессов, направленных на изготовление определенных видов продукции.
Организация производственного процесса состоит в объединении людей, орудий и предметов труда в единый процесс производства материальных благ, а также в обеспечении рационального сочетания в пространстве и во времени основных, вспомогательных и обслуживающих процессов.

Производственные процессы на предприятиях детализируются по содержанию (процесс, стадия, операция, элемент) и месту осуществления (предприятие, передел, цех, отделение, участок, агрегат).
Множество производственных процессов, происходящих на предприятии, представляет собой совокупный производственный процесс. Процесс производства каждого отдельного вида продукции предприятия называют частным производственным процессом . В свою очередь в частном производственном процессе могут быть выделены частичные производственные процессы как законченные и технологически обособленные элементы частного производственного процесса, не являющиеся первичными элементами производственного процесса (он, как правило, осуществляется рабочими разных специальностей с использованием оборудования различного назначения).
В качестве первичного элемента производственного процесса следует рассматривать технологическую операцию - технологически однородную часть производственного процесса, выполняемую на одном рабочем месте. Обособленные в технологическом отношении частичные процессы представляют собой стадии производственного процесса.
Частичные производственные процессы могут классифицироваться по нескольким признакам:

По целевому назначению;

Характеру протекания во времени;

Способу воздействия на предмет труда;

Характеру применяемого труда.
По целевому назначению выделяют процессы основные, вспомогательные и обслуживающие.
Основные
производственные процессы - процессы превращения сырья и материалов в готовую продукцию, являющуюся основной, профильной
продукцией для данного предприятия. Эти процессы определяются технологией изготовления данного вида продукции (подготовка сырья, химический синтез, смешение сырья, фасовка и упаковка продукции).
Вспомогательные производственные процессы направлены на изготовление продукции или выполнение услуг для обеспечения нормального протекания основных производственных процессов. Такие производственные процессы имеют собственные предметы труда, отличные от предметов труда основных производственных процессов. Как правило, осуществляются они параллельно с основными производственными процессами (ремонтное, тарное, инструментальное хозяйство).
Обслуживающие производственные процессы обеспечивают создание нормальных условий для протекания основных и вспомогательных производственных процессов. Они не имеют собственного предмета труда и протекают, как правило, последовательно с основными и вспомогательными процессами, перемежаются с ними (транспортировка сырья и готовой продукции, их хранение, контроль качества).
Основные производственные процессы в основных цехах (участках) предприятия и образуют его основное производство. Вспомогательные и обслуживающие производственные процессы соответственно во вспомогательных и обслуживающих цехах - образуют вспомогательное хозяйство.
Различная роль производственных процессов в совокупном производственном процессе определяет различия в механизмах управления различными видами производственных подразделений. В то же время классификация частичных производственных процессов по целевому назначению может проводиться только применительно к конкретному частному процессу.
Объединение основных, вспомогательных, обслуживающих и других процессов в определенной последовательности образует структуру производственного процесса.
Основной производственный процесс представляет процесс и производства основной продукции, который включает естественные процессы, технологический и рабочий процессы, а также межоперационное пролеживание.
Естественный процесс - процесс, который приводит к изменению свойств и состава предмета труда, но протекает без участия человека (например, при изготовлении некоторых видов химической продукции).

Естественные производственные процессы можно рассматривать как необходимые технологические перерывы между оп рациями (остывание, сушка, вызревание и т.д.)
Технологический процесс представляет собой совокупность процессов, в результате которых происходят все необходимые изменения в предмете труда, т. е. он превращается в готовую продукцию.
Вспомогательные операции способствуют выполнению основных операций (транспортировка, контроль, сортировка продукции и т. д.).
Рабочий процесс - совокупность всех трудовых процессов (основных и вспомогательных операций).
Структура производственного процесса изменяется под воздействием технологии применяемого оборудования, разделения труда, организации производства и др.
Межоперационное пролеживание - перерывы, предусмотренные технологическим процессом.
По характеру протекания во времени выделяют непрерывные и периодические производственные процессы. В непрерывных процессах нет перерывов в процессе производства. Выполнение операций по обслуживанию производства происходит одновременно или параллельно с основными операциями. В периодических процессах выполнение основных и обслуживающих операций происходит последовательно, в силу чего основной производственный процесс оказывается прерванным во времени.
По способу воздействия на предмет труда выделяют механические, физические, химические, биологические и другие виды производственных процессов.
По характеру применяемого труда производственные процессы классифицируются на автоматизированные, механизированные и ручные .

Принципы организации производственного процесса представляют собой исходные положения, на основекоторых осуществляются построение, функционирование и развитие производственного процесса.

Существуют следующие принципы организации производственного процесса:
дифференциация - разделение производственного процесса на отдельные части (процессы, операции, стадии) и их закрепление за соответствующими подразделениями предприятия;
комбинирование - объединение всех или части разнохарактерных процессов по изготовлению определенных видов продукции в пределах одного участка, цеха или производства;
концентрация - сосредоточение определенных производственных операций по изготовлению технологически однородной продукции или выполнению функционально-однородных работ на отдельных рабочих местах, участках, в цехах или производствах предприятия;
специализация - закрепление за каждым рабочим местом и каждым подразделением строго ограниченной номенклатуры работ, операций, деталей и изделий;
универсализация - изготовление деталей и изделий широкого ассортимента или выполнение разнородных производственных операций на каждом рабочем месте или производственном подразделении;
пропорциональность - сочетание отдельных элементов производственного процесса, которое выражается в их определенном количественном отношении друг с другом;
параллельность - одновременная обработка разных деталей одной партии по данной операции на нескольких рабочих местах и т. д.;
прямоточность - осуществление всех стадий и операций производственного процесса в условиях кратчайшего пути прохождения предмета труда от начала до конца;
ритмичность - повторение через установленные периоды времени всех отдельных производственных процессов и единого процесса производства определенного вида продукции.
Приведенные принципы организации производства на практике действуют не изолированно друг от друга, они тесно переплетаются в каждом производственном процессе. Принципы организации производства развиваются неравномерно - в тот или иной период тот или иной принцип выдвигается на первый план либо приобретает второстепенное значение.
Если пространственное сочетание элементов производственного процесса и всех его разновидностей реализуется на основе формирования производственной структуры предприятия и входящих в него подразделений, организация производственных процессов во времени находит выражение в установлении порядка выполнения отдельных логистических операций, рациональном совмещении времени выполнения различных видов работ, определении календарно-плановых нормативов движения предметов труда.
Основой построения эффективной системы производственной логистики является производственное расписание, сформированное исходя из задачи удовлетворения потребительского спроса и отвечающего на вопросы: кто, что, где, когда и в каком количестве будет выпускать (производить). Производственное расписание позволяет установить дифференцированные по каждому структурному производственному подразделению объемные и временные характеристики материальных потоков.
Методы, применяемые для составления производственного расписания, зависят от типа производства, а также характеристик спроса и параметров заказов может быть единичным, мелкосерийным, серийным, крупносерийным, массовым.
Характеристику типа производства дополняет характеристика производственного цикла - это период времени между моментами начала и окончания производственного процесса применительно к конкретной продукции в рамках логистической системы (предприятия).
Производственный цикл состоит из рабочего времени и времени перерывов при изготовлении продукции.
В свою очередь, рабочий период складывается из основного технологического времени, времени выполнения транспортных в контрольных операций и времени комплектации.
Время перерывов подразделяется на время межоперационных, меж-участковых и других перерывов.
Длительность производственного цикла во многом зависит от характеристики движения материального потока, которое бывает последовательным, параллельным, параллельно-последовательным.
Кроме того, на длительность производственного цикла влияют также формы технологической специализации производственных подразделений, система организации самих производственных процессов, прогрессивность применяемой технологии и уровень унификации выпускаемой продукции.
Производственный цикл включает также время ожидания - это интервал с момента поступления заказа до момента начала его выполнения, для минимизации которого важно изначально определить оптимальную партию изделий - партия, при которой затраты в расчете на одно изделие составляют минимальную величину.
Для решения задачи выбора оптимальной партии принято считать, что себестоимость продукции складывается из прямых затрат на изготовление, затрат на хранение запасов и затрат на переналадку оборудования и его простои при смене партии.
На практике часто оптимальная партия определяется прямым счетом, но при формировании логистических систем более эффективным является применение методов математического программирования.
Во всех сферах деятельности, но особенно в производственной логистике, важнейшее значение имеет система норм и нормативов. В нее включаются как укрупненные, так и детальные нормы расхода материалов, энергии, использования оборудования и т. д.

2. Методы решения транспортной задачи.

Транспортная задача (классическая) - задача об оптимальном плане перевозок однородного продукта из однородных пунктов наличия в однородные пункты потребления на однородных транспортных средствах (предопределённом количестве) со статичными данными и линеарном подходе (это основные условия задачи).

Для классической транспортной задачи выделяют два типа задач: критерий стоимости (достижение минимума затрат на перевозку) или расстояний и критерий времени (затрачивается минимум времени на перевозку).

История поиска методов решения

Проблема была впервые формализована французским математиком Гаспаром Монжем в 1781 году . Основное продвижение было сделано на полях во время Великой Отечественной войны советским математиком и экономистом Леонидом Канторовичем . Поэтому иногда эта проблема называется транспортной задачей Монжа - Канторовича .

Изокванты и изоклины ПФ

Если вновь обратиться к методу аналогии, то, как и в случае модели поведения потребителя, в теории моделирования производственных процессов можно выделить понятие кривой безразличия производителя. Этому понятию может соответствовать множество наборов производственных факторов, которым соответствует одинаковое количество произведенного продукта, то есть:

Множество точек, удовлетворяющих равенству (4.1), называют изоквантой ПФ (iso – постоянный, quantity – количество). Каждая изокванта соответствует различному уровню производства продукта (y ), причем изокванты, более удаленные от нулевой точки (точки бездействия) соответствуют более высоким значениям y . Изокванты также обладают теми же свойствами, что и кривые безразличия (параллельны друг другу, не пересекаются с осями абсцисс и ординат и др.) Для двухфакторной ПФ изокванта по сути будет выражать функциональную зависимость затрат капитала от затрат труда при данном уровне произведенного продукта:

Производитель, варьируя технологии, может выбирать разные сочетания факторов производства и поддерживать при этом постоянный уровень производства. Согласно изокванте, увеличение одного фактора приведет к уменьшению другого. Следовательно, должна существовать характеристика, позволяющая оценить компенсацию одного фактора другим. Такой характеристикой является предельная норма замещения (аналогично такой же характеристике в теории полезности потребителя):

, (4.2)

которая показывает, какое увеличение фактора j скомпенсирует снижение фактора i на единицу, чтобы уровень производства продукта остался прежним (замещение фактора i фактором j ).



Соответственно обратное замещение (фактора j фактором i) будет характеризоваться обратной величиной: .

Согласно взаимосвязи коэффициента эластичности и предельного продукта (4.1) предельную норму замещения можно выразить как:

(4.3)

Согласно (4.1) для двухфакторной ПФ имеем:

- предельная норма замещения капитала трудом;

- предельная норма замещения труда капиталом.

Согласно (4.3) для двухфакторной модели также предельную норму замещения можно выразить через коэффициенты эластичности:

, где к – фондовооруженность.

Наряду с изоквантами важную роль в ПФ играют изоклины – множества точек экономической области, у которых предельная норма замещения i -го фактора j -м постоянна:

Используя понятие изоклины (изоклинали) можно преобразовать произвольный набор факторов (L,K) в набор (Y,MRS) , то есть решением системы уравнений:

будет являться:

Однородная ПФ с постоянной предельной нормой замещения труда капиталом и степенью однородности δ=1 относится к классу линейных функций, то есть .

Таким образом, для двухфакторной ПФ каждая точка изокванты характеризуется затратами капитала и труда или предельной нормой замещения труда капиталом MRS LK и фондовооруженностью k . Если обратиться к геометрическому представлению, то MRS LK равна угловому коэффициенту касательной к данной точке изокванты, а величина k – угловому коэффициенту луча, выходящего из начала координат и проходящего через заданную точку изокванты (см. Рис. 4.2 ).

Рис 4.2

Например, в точке В значение затрат труда больше, чем в точке А , следовательно, значение MRS LK в точке В меньше, чем в точке А . Соответственно точка В будет соответствовать меньшему значению фондовооруженности, чем в точке А .

Таким образом, очевидной становится связь между изменением фондовооруженности и предельной нормой замещения труда капитала, то есть мы опять приходим к понятию эластичности, а именно эластичности замещения труда капиталом, которая показывает, насколько процентов изменится фондовооруженность труда при изменении предельной нормы замещения труда капиталом на один процент:

(4.4)

Графически можно также показать, что с ростом кривизны изокванты эластичность E σ уменьшается (см. Рис. 4.3 ).

Рис 4.3

Отметим, что в обоих случаях в точках А и В значения MRS LK остаются одинаковыми, а значение фондовооруженности в точке А выше, чем в точке В . Отсюда вытекает еще одно важное свойство: для однородной ПФ эластичность замещения труда капиталом зависит лишь от фондовооруженности и остается постоянной вдоль лучей, выходящих из нулевой точки.

Выразим связь между MRS LK и k при постоянной эластичности E σ . Согласно (4.4) имеем:

(4.5)

Предполагая зависимость MRS LK (k) , можно записать (4.5) в виде обычного дифференциального уравнения:

(4.6)

Интегрирование (4.6) дает:

или после преобразования:

, где

Следовательно, условие постоянства эластичности замещения труда капиталом дает степенную зависимость между величинами MRS LK и k . Соответственно, случай единичной эластичности будет соответствовать линейной связи между указанными величинами:

Введение понятия постоянной эластичности замещения привело к общей форме однородной ПФ, для которой эластичность замещения факторов постоянна. Такие ПФ называют ПФ класса CES (Constant Elasticity of Substitution ). Впервые функции этого класса были предложены Эрроу Кеннетом и Солоу Робертом в 1961 году. Функции этого класса предполагают, что замещение труда капиталом возможно только в некоторых пределах и не существует технологий, которые позволяли бы произвести заданное количество продукта при затратах факторов производства ниже определенных критических значений. (Геометрически это означает, что можно построить асимптоты к изокванте, и они будут соответствовать минимально возможным значениями труда и капитала. Возможен вывод математических соотношений асимптот, в данном изложении этот материал мы не будем приводить.)

Многие ПФ являются по сути частными или предельными случаями функций CES, основные характеристики которых приведены в Табл 4.1 .

Табл 4.1

Понятие производственной системы и производственного процесса. Технологический процесс и технологическое множество

Основная задача любого производственного процесса - создание добавленной стоимости и нового экономического продукта, который затем участвует в последующих процессах обмена и потребления. Известно, что производственный процесс является условием возникновения процессов потребления с одной стороны, а с другой, прекращение потребления приводит к прекращению производственного процесса. Следовательно, развитие производственных процессов определяется экономическим поведением потребителя. Эту взаимосвязь можно представить в виде следующей концептуальной модели по функционирования экономического объекта:

Центральным звеном является модель производственного процесса, которая связывает входные переменные производственной системы с выходными; модель рынка ресурсов является необходимым условием функционирования производственного процесса; модель рынка товаров – необходимое условие существования и возобновления производственного процесса; модель принятия решений – выбор наилучшего в некотором смысле решения товаропроизводителя об объемах выпуска на основе информации о рыночной конъюнктуре и производственных возможностях.

Современные представления в области моделирования производственных процессов базируются на теориях экономистов -неоклассиков , которые предложили модель человека «экономического», хозяйственное поведение которого определяется функцией полезности.

Таким образом, производственный процесс – это процесс создания добавленной стоимости путем целенаправленного преобразования одного набора товаров в другой. Экономическая система, в которой организован и протекает производственный процесс, называется производственной системой или производством. Цель любой производственной системы – желаемое конкретное конечное будущее состояние или результат хозяйственной деятельности. С точки зрения неоклассической экономической теории целями производителя являются максимизация дохода или прибыли, или минимизация издержек. Потребляемые товары в процессе производства называют производственными факторами , полученные товары в результате производственного процесса – продуктами производства .

С этой точки зрения любая производственная система со сложной внутренней структурой представляет собой «черный ящик», при этом известной является информация о производственных факторах (входная информация) и продукте производства (результат), а неизвестная внутренняя структура описывается с помощью некоторой производственной функции. При этом надо помнить о том, что модель «черного ящика» полезна для экономиста, но бесполезна для менеджера, реформирующего организационную структуру и процессы внутри системы.

Помимо понятия производственных функций для моделирования производственных процессов важны такие понятия, как концепция эластичности факторов производства, предельной нормы замещения факторов производства, так как ресурсы в производственной системе могут выступать в роли товаров-субститутов . Кроме того, в реальном производственном процессе невозможно производить продукт при полном отсутствии какого-либо фактора производства, то есть можно говорить о взаимодополняемости факторов производства, то есть об их комплементарности.

Технология - это технический способ преобразования факторов производства в продукты. Существует огромное число доступных технологий, из которых производители выбирают самые эффективные. Технология задает отношение между элементом u из числа факторов производства и элементом v из области продуктов. Технологический процесс – это совокупность отношений между элементами u i и v j (), поэтому он является простейшей моделью производственного процесса. В свою очередь, совокупность технологических процессов образует технологическое множество . Технологические множества обладают следующими свойствами:

1. невозможность существования «рога изобилия», то есть нулевой технологический процесс (без затрат факторов производства) принадлежит технологическому множеству и означает бездействие;

2. технологическое множество выпукло, то есть технологические процессы можно комбинировать (некоторый технологический процесс может являться выпуклой комбинацией других);

3. технологическое множество ограничено сверху, что связано с ограниченностью (исчерпаемостью) ресурсов (факторов производства);

4. технологическое множество замкнуто, то есть имеет границы.

Эффективные технологические процессы описываются точками, лежащими на эффективной границе выпуклого технологического множества.

Метод технологических множеств позволяет описать многономенклатурное производство, так как возможен строгий переход от технологических множеств к производственным функциям путем агрегирования факторов производства и продуктов.

В заключение отметим, что существует два альтернативных подхода к решению задачи оптимального управления производственными процессами. Первый подход рассматривает задачу максимизации производства продукта при фиксированных бюджетных ограничениях. Решение этой задачи основано на анализе производственной функции производственной системы с учетом рыночной стоимости труда и капитала и размера производственного бюджета. Второй подход решает задачу минимизации производственных издержек при заданном уровне производства продукта. Эта задача решается с использованием функции затрат, которая может быть вычислена по имеющейся производственной функции. Эти два подхода приводят к одинаковому результату при решении оптимизационных задач. (Вспомнить двойственность! ).

Способы описания технологий.

Производство - основная область деятельности фир­мы. Фирмы используют производственные факторы, кото­рые называются также вводимыми (входными) факторами производства. Например, владелец пекарни использует та­кие вводимые факторы производства, как труд рабочих, сырье в виде муки и сахара, а также капитал, вложенный в печи, мешалки и другое оборудование для производства такой продукции, как хлеб, пирожки и кондитерские изде­лия.

Мы можем подразделить производственные факторы на крупные категории - труд, материалы и капитал, каждая из которых включает более узкие группировки. Например, труд как производственный фактор через показатель тру­доемкости объединяет как квалифицированный (плотни­ков, инженеров), так и неквалифицированный труд (сель­скохозяйственных рабочих), а также предприниматель­ские усилия руководителей фирмы. К материалам отно­сятся сталь, пластиковые материалы, электричество, вода и любое другое изделие, которое приобретает фирма и превращает в готовый товар. К капиталу относятся здания, оборудование и товарно-материальные ценности.

Множество всех технологически доступных для данной фирмы векторов чистых выпусков называют производственным множеством и обозначают через Y .

ПРОИЗВОДСТВЕННОЕ МНОЖЕСТВО - множество допустимых технологических способов данной экономической системы (X,Y ) , где X - совокупность векторов затрат , а Y - совокупность векторов выпуска .

П. м. характеризуется следующими особенностями: оно замкнуто и выпукло (см. Множество ), векторы затрат обязательно ненулевые (нельзя что-то производить, ничего не затрачивая), компоненты П. м. - затраты и выпуски - нельзя менять местами, ибо производство - необратимый процесс. Выпуклость П. м. показывает, в частности, тот факт, что отдача от перерабатываемых ресурсов при увеличении объема переработки сокращается.

Cвойства производственных множеств

Рассмотрим экономику с l благами. Для конкретной фирмы естественно рассматривать часть из этих товаров как факторы производства и часть - как выпускаемую продукцию. Следует оговориться, что такое деление довольно условно, так как фирма обладает достаточной свободой в выборе ассортимента производимой продукции и структуры затрат. При описании технологии будем различить выпуск и затраты, представляя последние как выпуск со знаком минус. Для удобства представления технологии продукцию, которая и не затрачивается и не выпускается фирмой, будем относить к ее выпуску, причем объем производства этой продукции считаем равным 0. В принципе не исключена ситуация, в которой продукт, производимый фирмой, также потребляется ею в процессе производства. В этом случае мы будем рассматривать только чистый выпуск данного продукта, т. е. его выпуск минус затраты.



Пусть число факторов производства равно n, а число видов выпускаемой продукции равно m, так что l = m + n. Обозначим вектор затрат (по абсолютной величине) через r 2 Rn+, а объемы выпусков через y 2 Rm+

Вектор (−r, yo) будем называть вектором чистых выпусков. Совокупность всех технологически допустимых векторов чистых выпусков y = (−r, yo) составляет технологическое множество Y . Таким образом, в рассматриваемом случае любое технологическое множество - это подмножество Rn − × Rm+

Такое описание производства носит общий характер. При этом можно не придерживаться жесткого деления благ на продукты и факторы производства: одно и то же благо может при одной технологии затрачиваться, а при другой - производится.

Опишем свойства технологических множеств, в терминах которых обычно дается описание конкретных классов технологий.

1. Непустота. Технологическое множество Y непусто. Это свойство означает принципиальную возможность осуществления производственной деятельности.

2. Замкнутость. Технологическое множество Y замкнуто. Это свойство скорее техническое; оно означает, что технологическое множество содержит свою границу, и предел любой последовательности технологически допустимых векторов чистого выпуска также является технологически допустимым вектором чистых выпусков.

3. Свобода расходования. Это свойство можно интерпретировать как наличие возможности производить тот же самый объем выпуска, но посредством больших затрат, или меньший выпуск при тех же затратах.

4. Отсутствие «рога изобилия» (“no free lunch”). если y 2 Y и y > 0, то y = 0. Это свойство означает, что для производства продукции в положительном количестве необходимы затраты в ненулевом объеме.

< _ < 1, тогда y0 2 Y. Иногда это свойство называют (не совсем точно) убывающей отдачей от масштаба. В случае двух благ, когда одно затрачивается, а другое производится, убывающая отдача означает, что (максимально возможная) средняя производительность затрачиваемого фактора не возрастает. Если за час вы можете решить в лучшем случае 5 однотипных задач по микроэкономике, то за два часа в условиях убывающей отдачи вы не смогли бы решить более 10 таких задач.

50 . Неубывающая отдача от масштаба: если y 2 Y и y0 = _y, где _ > 1, тогда y0 2 Y.

В случае двух товаров, когда один затрачивается, а другой производится, возрастающая отдача означает, что (максимально возможная) средняя производительность затрачиваемого фактора не убывает.

500 . Постоянная отдача от масштаба - ситуация, когда технологической множества удовлетворяет условиям 5 и 50 одновременно, т. е. если y 2 Y и y0 = _y0, тогда y0 2 Y 8_ > 0.

Геометрически постоянная отдача от масштаба означает, что Y является конусом (возможно, не содержащим 0). В случае двух товаров, когда один затрачивается, а другой производится, постоянная отдача означает, что средняя производительность затрачиваемого фактора не меняется при изменении объема производства.

5. Невозрастающая отдача от масштаба: если y 2 Y и y0 = _y, где 0 < _ < 1, тогда y0 2 Y. Иногда это свойство называют (не совсем точно) убывающей отдачей от масштаба. В случае двух благ, когда одно затрачивается, а другое производится, убывающая отдача означает, что (максимально возможная) средняя производительность затрачиваемого фактора не возрастает. Если за час вы можете решить в лучшем случае 5 однотипных задач по микроэкономике, то за два часа в условиях убывающей отдачи вы не смогли бы решить более 10 таких задач.

50 . Неубывающая отдача от масштаба: если y 2 Y и y0 = _y, где _ > 1, тогда y0 2 Y. В случае двух товаров, когда один затрачивается, а другой производится, возрастающая отдача означает, что (максимально возможная) средняя производительность затрачиваемого фактора не убывает.

500 . Постоянная отдача от масштаба - ситуация, когда технологической множества удовлетворяет условиям 5 и 50 одновременно, т. е. если y 2 Y и y0 = _y0, тогда y0 2 Y 8_ > 0.

Геометрически постоянная отдача от масштаба означает, что Y является конусом (возможно, не содержащим 0).

В случае двух товаров, когда один затрачивается, а другой производится, постоянная отдача означает, что средняя производительность затрачиваемого фактора не меняется при изменении объема производства.

6. Выпуклость: Свойство выпуклости означает возможность «смешивать» технологии в любой пропорции.

7. Необратимость

Пусть из килограмма стали можно произвести 5 подшипников. Необратимость означает, что невозможно произвести из 5-ти подшипников килограмм стали.

8. Аддитивность. если y 2 Y и y0 2 Y , то y + y0 2 Y. Свойство аддитивности означает возможность комбинировать технологии.

9. Допустимость бездеятельности:

Теорема 44:

1) Из невозрастающей отдачи от масштаба и аддитивности технологического множества следует его выпуклость.

2) Из выпуклости технологического множества и допустимости бездеятельности следует невозрастающая отдача от масштаба. (Обратное не всегда верно: при невозрастающей отдаче технология может быть невыпуклой)

3) Технологическое множество обладает свойствами аддитивности и невозрастающей отдачи от масштаба тогда и только тогда, когда оно - выпуклый конус.

Не все допустимые технологии в равной степени важны с экономической точки зрения.

Среди допустимых особо выделяются эффективные технологии. Допустимую технологию y принято называть эффективной, если не существует другой (отличной от нее) допустимой технологии y0 , такой что y0 > y. Очевидно, что такое определение эффективности неявно подразумевает, что все блага являются в определенном смысле желательными. Эффективные технологии составляют эффективную границу технологического множества. При определенных условиях оказывается возможным использовать в анализе эффективную границу вместо всего технологического множества. При этом важно, чтобы для любой допустимой технологии y нашлась эффективная технология y0 , такая что y0 > y. Для того, чтобы это условие было выполнено, требуется, чтобы технологическое множество было замкнутым, и чтобы в пределах технологического множества невозможно было увеличивать до бесконечности выпуск одногоблага, не уменьшая при этом выпуск других благ.

ТЕХНОЛОГИЧЕСКИЙ СПОСОБ - общее понятие, объединяющее два: Т. с. производства (производственный способ, технология ) и Т. с. потребления; совокупность основных характеристик (ингредиентов ) процесса производства (соответственно - потребления ) того или иного продукта . В экономико-математической модели Т. с., или технология (activity), описывается системой присущих ему чисел (вектором ): напр., нормами затрат и выпуска различных ресурсов в единицу времени или в расчете на единицу продукции и т. п., в т. ч. коэффициентами материалоемкости , трудоемкости , фондоемкости , капиталоемкости .

Напр., если x = (x 1 , ..., x m ) - вектор затрат ресурсов (перечисленных под номерами i = 1, 2, ..., m ), а y = (y 1 , ..., y n ) - вектор объемов производства продуктов j= 1, 2, ..., n , то технологиями, технологическими процессами, способами производства можно назвать пары векторов (x,y ). Технологическая допустимость означает здесь возможность получить из затрачиваемых (используемых) ингредиентов вектора x вектор продукции y .

Совокупность всевозможных допустимых технологий (XY ) образует технологическое или производственное множество данной экономической системы .

ВЕКТОР - упорядоченный набор из некоторого количества действительных чисел (таково одно из многих определений - то, которое принято в экономико-математических методах ). Напр., суточный план цеха может быть записан 4-мерным вектором (5, 3, -8, 4), где 5 означает 5 тыс. деталей одного вида, 3 - 3 тыс. деталей второго вида, (-8) - расход металла в т, а последняя компонента, допустим, экономию 4 тыс. кВт. ч электроэнергии. Как видно, число компонент (координат ) В. произвольно (в данном случае план цеха может состоять не из четырех, а из любого другого числа показателей); их недопустимо менять местами; они могут быть как положительными, так и отрицательными.

Векторы можно умножать на действительное число (напр., если увеличить план в 1,2 раза по всем показателям, то получится новый В. с тем же числом компонент). Векторы, содержащие равное число соответственно одноименных аддитивных компонент, можно складывать и вычитать.

Буквенное обозначение В. принято выделять жирным шрифтом (хотя не всегда это соблюдается).

Суммой векторов x = (x 1 ,..., x n) и y = (y 1 , ..., y n ) является также В. (x + y ) = (x 1 + y 1 , ..., x n +y n ).

Скалярным произведением векторов x и y называется число, равное сумме произведений соответствующих компонент этих В.:

Векторы x и y называются ортогональными , если их скалярное произведение равно нулю.

Равенство В. - компонентное, т. е. два В. равны, если равны их соответствующие компоненты.

Вектор 0 - (0, ..., 0) нулевой ;

n -мерный В. - положительный (x > 0), если все его компоненты x i больше нуля, неотрицательный (x ≥ 0), если все его компоненты x i больше 0 или равны нулю, т. е. x i ≤ 0; и полуположительный , если при этом хотя бы одна компонента x i ≥ 0 (обозначение x ≥ 0); если В. имеют равное количество компонент, возможно их упорядочение (полное или частичное), т. е. введение на множестве векторов бинарного отношения > ”: x > y , x y , x y в зависимости от того, положительна, полуположительна или неотрицательна разность x – y.

ЗАКОН УБЫВАЮЩЕЙ ОТДАЧИ -утверждение о том, что если расширяется использование какого-либо одного фактора производства и сохраняются при этом затраты всех остальных факторов (они называются фиксированными ), то физический объем предельного продукта , производимого с помощью указанного фактора, станет (по крайней мере, с определенного этапа) убывать.

ПРОИЗВОДСТВЕННЫЙ ЛУЧ - геометрическое место точек, отображающих пропорциональное увеличение количества ресурсов при использовании определенного технологического способа с возрастающей интенсивностью .

Напр., если сочетание 3 ед. капитала (фондов) и 2 ед. труда (т. е. комбинация 3K + 2L ) дает 10 ед. некоторого продукта, то сочетания 6K + 4L , 9K + 6L , дающие соответственно 20 и 30 ед. и т. д., будут лежать на графике на прямой, называемой П. л. или технологическим лучом. При ином сочетании факторов П. л. будет иметь другой наклон. В силу неделимости многих факторов производства количество технологических способов и соответственно П. л. принимается конечным.

Напр., если в угольной лаве работает бригада из трех шахтеров и к ним добавить еще одного, выработка возрастет на четверть, а если добавить пятого, шестого, седьмого, прирост выработки станет уменьшаться, а затем и прекратится совсем: шахтеры в тесноте будут просто мешать друг другу.

Ключевое понятие здесь - предельная производительность труда (более широко - предельная производительность фактора производства δ Y x ). Напр., если рассматриваются два фактора, то при росте затрат одного из них (первого или второго) его предельная производительность падает.

Закон применим на краткосрочном отрезке времени и для данной технологии (ее пересмотр меняет ситуацию).

Характеризуется переменными, которые принимают активное участие в изменении производственной функции (капитала, земли, труда, времени). Нейтральный технический прогресс определяется такими техническими изменениями (автономного или материального вида), которые не нарушают равновесия, то есть экономически и социально безопасны для общества. Представим все это в виде схемы (см. схему 4.1.).  


Рассмотрены основные типовые модели оптимизации производственной деятельности фирмы с линейным технологическим множеством, статистические и динамические модели планирования производственных инвестиций , вопросы экономико-математического анализа хозяйственных решений на основе использования аппарата двойственных оценок . Изложены основные подходы к проблематике оценки качества производственных инвестиций , а также методы и показатели оценки их эффективности.  

Рассмотрим очень важный для модельных приложений случай, когда технологическое множество производственной системы является линейным выпуклым множеством , т. е. модель производства оказывается линейной.  

Замечание. Совместно предположения 2.1 и 2.2 означают, что технологическое множество является выпуклым конусом . Предположение 2.3, выделяющее линейные технологии, означает, что этот конус является выпуклым многогранником в полупространстве  

Можно ли утверждать, что в экономической области фирмы с линейным технологическим множеством производственная функция является монотонной Как связано определение производственной функции с критерием оптимальности в задаче Канторовича  

Соотношение (3.26) дает возможность указать конкретный вид производственной функции для модели производственной системы с линейным технологическим множеством (рассмотренная выше модель (1.1)- (1.6))  

Состояние каждого производственного элемента будем по-прежнему задавать вектором затраты-выпуск yt = = (vt, u), а модель ограничений - технологическим множеством Yt yt = (Vi, ut) e YI.  

Общее технологическое множество производственного элемента может быть получено как результат объединения всех допустимых с точки зрения условий (2.1.2) и (2.1.3) векторов затраты - выпуск  

Описание технологического множества однопродуктового элемента, приведенное в предыдущем параграфе, является простейшим. Учет дополнительных свойств технологии элемента приводит к необходимости дополнить его рядом черт. Некоторые из них мы рассмотрим в этом параграфе. Конечно, приводимые рассмотрения не исчерпывают всех имеющихся в этом направлении возможностей.  

Сепарабельная выпуклая модель производства. Учет фактора нелинейности в описанной в предыдущем примере модели ограничений производства приводит к нелинейной сепарабельной модели многопродуктового элемента. Учет нелинейности осуществляется путем введения нелинейных сепарабельных производственных функций . Технологическое множество многопродуктового элемента с такими производственными функциями имеет вид  

В рассмотренных технологических моделях производственных элементов описание технологического множества дается путем задания множества допустимых затрат и множества допустимых выпусков ду каждого уровня затрат. Такого рода описания удобны в задачах типа оптимального распределения ресурсов , в которых при заданных уровнях потребления ресурсов приходится определить допустимые и наиболее эффективные (в смысле того или иного критерия) уровни выпуска. Вместе с тем на практике (особенно в планируемой экономике) встречается также своего рода обратная задача , когда уровень выпуска продукции элементами задан планом и необходимо определить допустимые и минимальные уровни затрат элементов . Задачи такого рода могут быть условно названы задачами оптимального выполнения плановой программы выпуска. В таких задачах удобно применить обратную последовательность описания технологического множества производственного элемента сначала задавать множество U допустимых выпусков и g= U, а затем для каждого допустимого уровня выпусков - множество V (и) допустимых затрат v Е= V (и).  

Общее технологическое множество Y производственного элемента при этом имеет вид  

На рис. 3.4 этому ограничению удовлетворяют все точки технологического множества, расположенные выше отрезка ЕС или лежащие на нем.  

В большей части оригинальным является и материал 4.21. Оценка эффективности рыночных механизмов , обеспечивающих существование единого равновесного управления, проводилась в работах . Материал 4.21 является расширением этих работ. Рассмотрение схемы аукциона в рыночной системе проводится согласно . Известной моделью, рассмотренной в качестве примера в этом параграфе, является модель рыночной экономики. Подробное ее рассмотрение можно найти, например, в работах . В 4.21 мы предполагали, что рыночное равновесие существует. Как показывает рассмотрение схемы аукциона в рыночной системе , это положение может не всегда иметь место. Рассмотрение вопросов, связанных с существованием равновесия в рыночных моделях ,- один из центральных вопросов математической экономики . Применительно к моделям конкурентной экономики существование равновесия установлено рядом авторов при различных предположениях . Обычно доказательство предполагает выпуклость функций полезности (или предпочтений) потребителей и технологических множеств производителей. В приводится обобщение модели Эрроу - Дебре на случай континуума игроков. При этом удалось отказаться от предположений о выпуклости функций предпочтений потребителей.  

Каждый производитель (фирма) j характеризуется технологическим множеством Y. - совокупностью технологически допустимых л-мер-ных векторов затрат - выпуска их положительным компонентам соответствуют выпускаемые количества, а отрицательным - затрачиваемые. Предполагается, что производитель выбирает вектор затрат - выпуска так, чтобы получить максимальную прибыль. При этом он, как и потребитель, не пытается влиять на цены, принимая их заданными. Таким образом, его выбор является решением следующей задачи  

Из (16) также следует слабая аксиома выявленного предпочтения . Неравенство (16) заведомо выполняется, если спрос каждого из потребителей строго монотонен при этом на технологические множества не накладывается особых требований. Интерпретация условия монотонности и ряд связанных с ним результатов приведены в . Для гладких функций избыточного спроса единственность равновесия обеспечивается также условием доминирующей диагонали . Это условие означает, что модуль производной спроса на каждый продукт по цене этого продукта больше суммы модулей всех производных спроса на тот же  

Модель производителя. При выборе объемов производства yj = у к каждая фирма j e J ограничена своим технологическим множеством YJ с 1R1. Эти множества допустимых технологий можно задавать в частности в виде (неявных) производственных функций fj(yj) YJ = УЗ е Rl /,(%) > 0 . Другое удобное представление (когда производится только один товар h) - в виде явной производственной функции у 0.  

Технологическое множество и его свойства  

ТЕХНОЛОГИЧЕСКОЕ МНОЖЕСТВО - см. Производственное множество , Технологический способ.  

Описание одного конкретного вида технологического множества рассмотрим для производственного элемента , потребляющего несколько видов затрат и выпускающего продукцию только одного вида (однопродуктовый производственный элемент). Вектор состояния такого элемента имеет вид yt- (vtl, viz,. . . , v. x, ut). Известный способ описания технологического множества однопродук-тового элемента основывается на понятии производственной функции и заключается в следующем.  

Обычно предполагается, что технологическое множество элемента является выпуклым, замкнутым и содержащим нулевой элемент подмножеством евклидового пространства Ет размерности т О Е Y d Em.  

Рассмотренные в предыдущем параграфе методы представления технологических множеств производственных элементов характеризуют их свойства, но не задают описание в явном виде. Для однойродуктовых производственных элементов явное описание технологического множества можно задать, используя понятие производственной функции . В 1.2 мы уже касались этого понятия и его использования, в этом параграфе рассмотрение этих вопросов будет продолжено.  

Использование однопродуктовых производственных функций для описания технологического множества многопродуктового элемента. Если многопродуктовый элемент производит товых видов продукции, потребляя при этом /гевх видов затрат , то его векторы затрат и выпуска имеют вид v = (i>i, vz,. . ., Ут х) и и = (м1г w2,.. ., итвых) соответственно.  

Ему соответствует часть технологического множества, ограниченная кривосторонним треугольником AB (отмечена штриховкой на рис. 3.4).  

Модель децентрализованной экономики Эрроу - Деб-ре - Мак-Кснзи. Общая модель децентрализованной экономики описывает производство, потребление и децентрализованный



error: Content is protected !!